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of Hölder Functions

Martin Křepela
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1 Introduction

The purpose of this text is to show some properties, especially those involv-
ing continuous and compact embeddings, of the spaces of Hölder continuous
functions on a one-dimensional compact interval. These fuctions, which we
will call simply Hölder functions for short, are usually defined in another
way than we are going to do. This definition contains a norm involving the
αth power function for some α ∈ (0, 1) (this approach is metioned at the
very end of the text). However, that definition can be easily generalized in
order to obtain much wider class of functions and this is the approach we
will use.

In our case, the space of Hölder functions is established using a “Hölder
norm” employing some real-valued function which we will denote by ϕ.
Hence, properties of the space depend on the properties of the function
ϕ. Our main goal is to describe when a Hölder space is continuously or even
compactly embedded in another one. The answer to this question can be
obtained by comparing the functions which “generate” the respective norms
of those spaces. It will be shown, for instance, that the spaces can be in fact
the same although the norm-generating functions are different. Generally,
we will provide equivalent characterizations of the continuous and compact
embeddings of the Hölder spaces.
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2 Preliminaries

First of all, let us summarize the basic notation and statements which will
be used later in the text.

Throughout the text, K denotes the compact unit interval 〈0, 1〉 ⊂ R.

Definition 1. Let (X, %) be a metric space and A a subset of X. Ā then
denotes the closure of A which is the smallest closed subset of X containing
A.

Proposition 2. Let (X, %) be a metric space and A a subset of X. Then

Ā = {x ∈ X : ∃{xn} ⊂ X, % (xn, x) n→∞−−−→ 0}.
Definition 3. Let (X, %) be a metric space. A subset A ⊂ X is called com-
pact if every sequence {xn}∞n=1 ⊂ A has a converging subsequence {xnk

}∞k=1

whose limit x lies in A. (Symbolically: % (xnk
, x) k→∞−−−→ 0.)

A is called relatively compact if Ā is compact.

Theorem 4. A subset A of a metric space (X, %) is compact if and only if
for each open cover of A there exists a finite subcover.

The condition of all open covers having finite subcovers is a general defi-
nition of a set’s compactness in topological spaces. The property introduced
by our Definition 3 is then called sequential compactness. The theorem above
says that in the case of metric spaces the two definitions are equivalent.

Definition 5. Let (X, ‖ · ‖X) is a normed space (‖ · ‖X denotes its norm).
A subset A ⊂ X is called bounded if there exists a real constant C such that

‖x‖X < C ∀ x ∈ A.

In other words,
sup
x∈A

‖x‖X < ∞.

In the context of function spaces, it is quite common to call the bounded
subsets of a (normed) function space to be equibounded to distinguish be-
tween boundedness of a single function and boundedness of a set of functions
as elements of the function space. Anyway, we will use the term “bounded”
in both cases since it will be clear if it describes a property of a single func-
tion or a set of functions. However, the norm in which is a set bounded can
be emphasized to prevent confusion when dealing with more function spaces
and their respective norms.
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Definition 6. Let (X, %) be a normed space. The symbol C(X) (C0(X)
alternatively) denotes the space of continuous functions f : X → R equipped
with the uniform norm defined as

‖f‖ := sup
x∈X

|f(x)|.

Next, we define

Cn(X) := {f : X → R, f (n) exists and f (n) ∈ C(X)}.
The norm of Cn(X) is defined as

‖f‖n := ‖f‖+
n∑

k=1

‖f (n)‖

for a function f : X → R.

This text will deal in particular with C(K) and Cn(K). In this case the
following proposition is true:

Proposition 7. Let X be a compact metric space. Then C(X) is a Banach
space.

The continuous and compact embeddings, the topic of this text, are
defined as follows:

Definition 8. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces. We say
that the space X is continuously embedded into Y and denote this by

X ↪→ Y

if it holds that X ⊂ Y (as sets) and there exists b > 0 such that

‖x‖Y ≤ b‖x‖X ∀ x ∈ X.

Moreover, we say that the spaces X and Y are equivalent, written

X ∼= Y

if X = Y (as sets) and there exist a, b > 0 such that

a‖x‖X ≤ ‖x‖Y ≤ b‖x‖X ∀ x ∈ X.

Finally, we say that the space X is compactly embedded into Y and denote
this by

X ↪→↪→ Y

if X ⊂ Y (as sets) and every bounded set in (X, ‖ · ‖X) is relatively compact
in (Y, ‖ · ‖Y ).
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In the study of compact embeddings of some spaces, a description of
their (relatively) compact subsets is always useful. In the case of continuous
functions over a compact metric space, such a criterion is provided by the
Arzelà-Ascoli theorem.

Definition 9. Let (X, %) be a metric space and x0 ∈ X. A subset M⊂ C(X)
is called equicontinuous at x0, if for every ε > 0 there exists δ > 0 such that

|f(x)− f(x0)| < ε

for all f ∈ M and all x ∈ X such that %(x, x0) < δ.
M is called equicontinuous if it is equicontinuous at every x0 ∈ X.

Theorem 10 (Arzelà-Ascoli). Let (X, %) be a compact metric space. A sub-
set of C(X) is relatively compact in C(X) if and only if it is bounded and
equicontinuous.

The norm of Hölder functions is in fact quite similar to the norm of the
Lipschitz ones. Not only for this reason the definition below is presented:

Definition 11. Let F : K → R be a real-valued function. The Lipschitz
seminorm of F is defined by

|F |L := sup
x,y∈K
x6=y

|F (x)− F (y)|
|x− y| .

If |F |L < ∞, then F is called Lipschitz function on K. We denote by Lip(K)
the space of all Lipschitz functions with the (Lipschitz) norm

‖ · ‖L := ‖ · ‖+ | · |L.

All the theorems and propositions above are well-known, however, their
proofs can be found, for instance, in [1] if needed.

Having introduced the preliminaries, we can proceed to the main part of
the work.
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3 Continuous embeddings of the Hölder spaces

It was said that the Hölder functions would be introduced in a generalized
sense so we start with proper definitions.

Definition 12. We denote by H the set of all functions ϕ which satisfy the
following conditions:

(H1) ϕ : K→〈0,∞) is non-decreasing on K,

(H2) limt→0+ ϕ(t) = 0,

(H3) limt→0+
ϕ(t)

t = ∞.

Definition 13. Assume that ϕ ∈ H. Then, for a function f : K → R we
define the ϕ-Hölder seminorm of f as

|f |ϕ := sup
x,y∈K
x6=y

|f(x)− f(y)|
ϕ(|x− y|) .

We denote by C0,ϕ(K) the space of all real-valued functions f on K such
that |f |ϕ < ∞ equipped with the norm

‖ · ‖ϕ := ‖ · ‖+ | · |ϕ. (1)

A function f ∈ C0,ϕ(K) is called a ϕ-Hölder function on K.

We will study the question when one Hölder space is continuously em-
bedded in another one, depending on properties of the functions from H
which generate the respective Hölder seminorms of those spaces.

Theorem 14. Consider functions ϕ,ψ ∈ H and denote

C1 := lim inf
t→0+

ψ(t)
ϕ(t)

, C2 := lim sup
t→0+

ψ(t)
ϕ(t)

.

Then the following statements hold:

(i) If C1 > 0, then C0,ϕ(K) ↪→ C0,ψ(K).

(ii) If C2 < ∞, then C0,ψ(K) ↪→ C0,ϕ(K).

(iii) If 0 < C1 ≤ C2 < ∞, then C0,ϕ(K) ∼= C0,ψ(K).
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Proof. (i) Suppose that

lim inf
t→0+

ψ(t)
ϕ(t)

= C1 > 0. (2)

From (2), there exists δ > 0 such that

C1 ≤ ψ(t)
ϕ(t)

∀ t ∈ (0, δ). (3)

Consider a function f : K → R. We know that both ϕ and ψ are non-negative
and non-decreasing functions, hence we have for all t ∈ 〈δ, 1〉:

ψ(δ)
ϕ(1)

≤ ψ(t)
ϕ(t)

.

Thus, for all x, y ∈ K such that |x− y| ≥ δ and f(x) 6= f(y):

ψ(δ)
ϕ(1)

≤ |f(x)− f(y)|
ψ(|x− y|) · ϕ(|x− y|)

|f(x)− f(y)|
and

ψ(δ)
ϕ(1)

· |f(x)− f(y)|
ψ(|x− y|) ≤ |f(x)− f(y)|

ϕ(|x− y|)
for all x, y ∈ K such that |x−y| ≥ δ. (In the case of f(x) = f(y) the second
inequalitiy holds trivially.) Finally

ψ(δ)
ϕ(1)

· sup
x,y∈K
|x−y|≥δ

|f(x)− f(y)|
ψ(|x− y|) ≤ sup

x,y∈K
|x−y|≥δ

|f(x)− f(y)|
ϕ(|x− y|) .

Similarly, we have from (3):

C1 . sup
x,y∈K
|x−y|<δ

|f(x)− f(y)|
ψ(|x− y|) ≤ sup

x,y∈K
|x−y|<δ

|f(x)− f(y)|
ϕ(|x− y|) .

Denote

a := min
{

C1,
ψ(δ)
ϕ(1)

}
> 0.

Then we have
|f |ψ ≤

1
a
|f |ϕ,

hence C0,ψ(K) ↪→ C0,ϕ(K).
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(ii) Both ϕ and ψ are non-negative on K, hence C2 = 1
C1

. Therefore, (ii) is
a direct consequence of (i).
(iii) From (i) and (ii), we obtain that C0,ϕ(K) ↪→ C0,ψ(K) as well as
C0,ψ(K) ↪→ C0,ϕ(K), hence C0,ϕ(K) ∼= C0,ψ(K) by definition.

Remark 15. One notices that although we assumed ϕ,ψ ∈ H in the previous
theorem, it holds even for ϕ,ψ not satisfying (H3). Then (C0,ϕ(K), ‖ · ‖ϕ)
is still defined correctly though we do not call it “Hölder” in this case. This
will be true also in some of the following statements and we will sometimes
refer to them in the sense of their “non–H3” versions without further notice.

However, the reason to add the (H3)-condition is to establish a wider
class of functions (of the Hölder type), as seen in the following corollary.

Corollary 16. Let ϕ be a function satisfying the conditions (H1), (H2) and
the modified condition

(H3*) limt→0+
ϕ(t)

t = C > 0.

Then C0,ϕ(K) ∼= Lip(K).

Proof. Consider ψ(t) := t and apply Theorem 14. (See Remark 15.)

Theorem 14 provides a sufficient condition for existence of continuous
embedding of a Hölder space into another one. However, we would like to
improve it to obtain a characterization of the existence of those embeddings.
The folowing theorem tells us that if, in particular, ϕ ∈ C0,ϕ(K) (i.e., ϕ is
Hölder in the norm generated by ϕ itself), then the condition introduced in
Theorem 14 (i) is necessary, too.

Theorem 17. Consider functions ϕ,ψ ∈ H and denote

C1 := lim inf
t→0+

ψ(t)
ϕ(t)

, C2 := lim sup
t→0+

ψ(t)
ϕ(t)

.

Then the following statements hold:

(i) If ϕ ∈ C0,ϕ(K), then C0,ϕ(K) ↪→ C0,ψ(K) if and only if C1 > 0.

(ii) If ψ ∈ C0,ψ(K), then C0,ψ(K) ↪→ C0,ϕ(K) if and only if C2 < ∞.

(iii) If ϕ ∈ C0,ϕ(K) and ψ ∈ C0,ψ(K), then C0,ϕ(K) ∼= C0,ψ(K) if and
only if 0 < C1 ≤ C2 < ∞.
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Proof. The “only if” parts of all three statements are proven by Theorem 14
under weaker assumptions.
We shall prove the “if” part of (i). The “if” parts of (ii) and (iii) will then
follow obviously. So, suppose that C1 = 0. We will show that then it even
holds that C0,ϕ(K) * C0,ψ(K).
To do so, we have to find a function f ∈ C0,ϕ(K) \ C0,ψ(K). Under given
conditions, it is not a very difficult task. We define f simply as

f(t) := ϕ(t), t ∈ K.

By the initial assumption, there exists a decreasing sequence {tn}∞n=1 ⊂ (0, 1)
such that tn ↘ 0 and

ϕ(tn)
ψ(tn)

> n ∀ n ∈ N. (4)

Moreover, f (≡ ϕ) is ϕ-Hölder and it holds that

|f(tn)− f(0)|
ϕ(tn)

=
f(tn)
ϕ(tn)

= 1 ∀ n ∈ N.

(Remember that f ≡ ϕ ∈ H, hence f(0) = 0 and f(t) > 0 for 0 < t < 1.)
On the other hand, from (4) we have

f(tn)
ψ(tn)

> n
f(tn)
ϕ(tn)

= n ∀ n ∈ N,

therefore

|f |ψ = sup
x,y∈K
x 6=y

|f(x)− f(y)|
ψ(|x− y|) ≥ sup

n∈N
|f(tn)− f(0)|

ψ(tn)
= sup

n∈N
f(tn)
ψ(tn)

= ∞.

Thus, f ∈ C0,ϕ(K) \ C0,ψ(K).

We can easily verify that the condition ϕ ∈ C0,ϕ(K) is satisfied, for in-
stance, if the the function ϕ ∈ H is non-convex:

Proposition 18. Suppose that a function ϕ ∈ H is non-convex on K. Then
ϕ ∈ C0,ϕ(K).

Proof. Since ϕ is non-decreasing and non-convex and ϕ(0) = 0, it holds that

|ϕ(x)− ϕ(y)| ≤ ϕ(|x− y|)− ϕ(0) = ϕ(|x− y|),
thus |ϕ|ϕ < ∞.

8



Proposition 18 provides a particular class of functions meeting the condi-
tion ϕ ∈ C0,ϕ(K) but this generally does not hold for every function ϕ ∈ H.
Thus, Theorem 17 cannot be used directly in a general case.

However, if there was a special function which both satisfied the prob-
lematic condition and had a “suitable” relation to the original fuction ϕ,
maybe the theorem would be still useful. This idea proves to be right and
it leads to the concept of the so-called “watch-functions” which we will in-
troduce now.

Definition 19. Consider t ∈ K and denote Λ(t) the system of all finite
divisions of t, which means

Λ(t) :=

{
{λi}N∈N

i=1 :
N∑

i=1

λi = t

}
.

Then, for ϕ ∈ H we define the watch-function corresponding to ϕ as

ϕ̃(t) := inf
Λ(t)

N∑

i=1

ϕ(λi), t ∈ K.

To prevent confusion, we point out that N is not a fixed number but it
depends on the particular division of t. Of course, different divisions of t
generally have different numbers of their elements (which is expressed by N).

The watch-functions prove to have remarkable properties. Let us show
them in the following theorem.

Theorem 20 (Properties of a watch-function). Consider a function ϕ∈H.
The corresponding watch-function ϕ̃ has following properties:

(i) ϕ̃(t) ≤ ϕ(t) for all t ∈ K,

(ii) ϕ̃ ∈ H,

(iii) ϕ̃ ∈ C0,ϕ̃(K).

Proof. (i) Consider t ∈ K. The singleton {t} is a trivial division of t, thus
we have

ϕ(t) ≥ inf
Λ(t)

N∑

i=1

ϕ(λi) = ϕ̃(t).
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(ii) We have to verify that ϕ̃ satisfies the conditions (H1)–(H3), provided
that ϕ satisfies them.
Obviously, ϕ̃ is a non-negative-valued function on K. To show that it is
non-decreasing, choose x, y ∈ K such that x < y and let us prove that
ϕ̃(x) ≤ ϕ̃(y).
Choose a division of y, i.e., the set {λi}N

i=1 ∈ Λ(y). First, consider the case
of N ≥ 2. Then we can extract a subset S := {λi1 , . . . , λir} such that

r∑

j=1

λij < x ≤
r∑

j=1

λij + λk ∀ λk /∈ S. (5)

Notice that there can exist more subsets (and corresponding numbers r)
satisfying (5). In this case, we just choose one of them. Anyway, it holds
that 0 < r < N . Define

κj :=
{

λij 1 ≤ j ≤ r
x−∑r

j=1 λij j = r + 1.

If N = 1, then λ1 = y and we define r := 0, κ1 := x and κ2 := y − x.
One sees that the set S′ := {κ1, . . . , κr+1} is a division of x. Moreover, from
(5) and the fact that ϕ is non-decreasing, it holds that

r+1∑

j=1

ϕ(κj) ≤
N∑

i=1

ϕ(λi).

Obviously, the left side can be replaced by the infimum over all divisions
{µk}M

k=1 ∈ Λ(x). On the right side, the passage to the infimum is also
possible thanks to the arbitrariness of the division {λ}N

i=1 ∈ Λ(y). Together,
we have

ϕ̃(x) = inf
Λ(x)

M∑

k=1

ϕ(µk) ≤ inf
Λ(y)

N∑

j=1

ϕ(λij ).

Thus, we have just proven that ϕ̃ is non-decreasing, hence it satisfies (H1).
(H2) is satisfied by ϕ̃ as a consequence of (i).
To prove that ϕ̃ satisfies also (H3), it suffices to show that for every C ∈ R
there exists ε > 0 such that

ϕ̃(t)
t

≥ C ∀ t ∈ (0, ε).

Set C ∈ R. We know that ϕ satisfies (H3), so there exists η > 0 such that

ϕ(t)
t

≥ C ∀ t ∈ (0, η). (6)
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Define ε := η and choose t ∈ (0, ε). Using (6), for an arbitrary division
{λi}N

i=1 ∈ Λ(t), we have

ϕ(λi) ≥ Cλi ∀ i ∈ {1, . . . , N},
therefore

N∑

i=1

ϕ(λi) ≥ C

N∑

i=1

λi = t

and, by passing to the infmium:

ϕ̃(t) ≥ Ct.

Hence, ϕ̃ satisfies (H3), thus ϕ̃ ∈ H.
(iii) We already have proven (ii), so C0,ϕ̃(K) is defined correctly. We shall
show that

|ϕ̃(x)− ϕ̃(y)| ≤ ϕ̃(|x− y|) (7)

for all x, y ∈ K. Thus, choose (fixed) x, y ∈ K, without loss of generality
assume that x < y. Then it holds by (i) that

|ϕ̃(x)− ϕ̃(y)| = ϕ̃(y)− ϕ̃(x).

By the definition of ϕ̃, for every ε > 0 there exist divisions {λi}N
i=1 ∈ Λ(x)

and {κj}M
j=1 ∈ Λ(y − x) such that

N∑

i=1

ϕ(λi) ≤ ϕ̃(x) +
ε

2
(8)

and
M∑

j=1

ϕ(κj) ≤ ϕ̃(y − x) +
ε

2
. (9)

Together, {λi} ∪ {κj} ∈ Λ(y), therefore it holds

ϕ̃(y) ≤
N∑

i=1

ϕ(λi) +
M∑

j=1

ϕ(κj) ≤ ϕ̃(x) + ϕ̃(y − x) + ε.

By the limit passage ε → 0+ we have

ϕ̃(y) ≤ ϕ̃(x) + ϕ̃(y − x),

thus
ϕ̃(y)− ϕ̃(x) ≤ ϕ̃(y − x).

Since x, y ∈ K were arbitrarily chosen, the inequality above holds for every
pair x, y ∈ K, x < y, hence ϕ̃ ∈ C0,ϕ̃(K).
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Let us continue our investigation the relation of the spaces C0,ϕ(K) and
C0,ϕ̃(K). To be specific, we aim to prove that these spaces are identical.
A key step on the path to proving that statement is the lemma below.

Lemma 21. Suppose that ϕ ∈ H and f ∈ C0,ϕ(K). Then we have

|f(x)− f(y)| ≤ |f |ϕ.ϕ̃(|x− y|) ∀ x, y ∈ K.

Proof. Choose x, y ∈ K, without loss of generality assume that x 6= y.
(Otherwise, the requested inequality is trivial.) Let {λi}n

i=1 ∈ Λ(|x− y|) be
an arbitrary division of |x− y|.
Denote

xi :=





x i = 0
x +

∑i
j=1 λj 1 ≤ i ≤ n− 1

y i = n

We have

|f(x)− f(y)| ≤
n−1∑

i=0

|f(xi)− f(xi+1)| ≤ |f |ϕ.

(
n∑

i=0

ϕ(λi)

)
.

Now, since the division {λi}n
i=1 was arbitrarily chosen from Λ(|x − y|), we

can pass to the infimum over Λ(|x− y|) on the right side, thus

|f(x)− f(y)| ≤ |f |ϕ. inf
Λ(|x−y|)

n∑

i=1

ϕ(λi) = |f |ϕ.ϕ̃(|x− y|).

Using the previous result, we are able to prove the following theorem
which is of a strategic importance. It states that the spaces C0,ϕ(K) and
C0,ϕ̃(K) are equivalent even with unit constants of norms equivalence.

Theorem 22. Let f : K → R be a function and ϕ ∈ H. Then it holds that

‖f‖ϕ = ‖f‖ϕ̃.

Proof. It suffices to prove that |f |ϕ = |f |ϕ̃.
Let x, y be arbitrary points such that x, y ∈ K and x 6= y. By Lemma 21,
it holds that

ω(f, |x− y|) ≤ |f |ϕ.ϕ̃(|x− y|),
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thus, in paticular,
|f(x)− f(y)|
ϕ̃(|x− y|) ≤ |f |ϕ. (10)

Next, by Theorem 20 (i) we have

|f(x)− f(y)|
ϕ(|x− y|) ≤ |f(x)− f(y)|

ϕ̃(|x− y|) . (11)

Combining (10) and (11), we obtain

|f(x)− f(y)|
ϕ(|x− y|) ≤ |f(x)− f(y)|

ϕ̃(|x− y|) ≤ |f |ϕ,

therefore, thanks to the choice of x, y:

sup
x,y∈K
x 6=y

|f(x)− f(y)|
ϕ(|x− y|) ≤ sup

x,y∈K
x 6=y

|f(x)− f(y)|
ϕ̃|x− y| ≤ |f |ϕ,

thus |f |ϕ ≤ |f |ϕ̃ ≤ |f |ϕ, which means that ‖f‖ϕ = ‖f‖ϕ̃. By the proof it
is also clear that ‖f‖ϕ = ∞ if and only if ‖f‖ϕ̃ = ∞, and in this case the
statement holds trivially.

At last, we can now formulate a necessary and sufficient condition of the
existence of continuous embedding of Hölder spaces.

Theorem 23 (A characterization of the existence of a continuous embedding
of Hölder spaces). Consider two functions ϕ,ψ ∈ H. Denote

C1 := lim inf
t→0+

ψ(t)
ϕ̃(t)

, C2 := lim sup
t→0+

ψ̃(t)
ϕ(t)

.

Then the following statements hold:

(i) If ϕ ∈ C0,ϕ(K), then C0,ϕ(K) ↪→ C0,ψ(K) if and only if C1 > 0.

(ii) If ψ ∈ C0,ψ(K), then C0,ψ(K) ↪→ C0,ϕ(K) if and only if C2 < ∞.

(iii) If ϕ ∈ C0,ϕ(K) and ψ ∈ C0,ψ(K), then C0,ϕ(K) ∼= C0,ψ(K) if and
only if 0 < C1 ≤ C2 < ∞.

Proof. (i). By Theorem 22, it holds that C0,ϕ(K) ↪→ C0,ψ(K) if and only if

C0,ϕ̃(K) ↪→ C0,ψ(K). (12)

From Theorem 20 (iii) and Theorem 17, (12) is true if and only if C1 > 0.
Statements (ii) and (iii) can be proven similarly.
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4 Compact embeddings of the Hölder spaces

In a similar way as before, we will now study the compact embeddings of
Hölder spaces. At first, the completeness of the Hölder spaces needs to be
proven.

Theorem 24. Assume that ϕ ∈ H. (C0,ϕ(K), ‖ · ‖ϕ) is then a Banach
space.

Proof. Clearly, (C0,ϕ(K), ‖ · ‖ϕ) is a normed linear space. We have to show
that it is complete.
Consider a Cauchy sequence {fn}∞n=1 in (C0,ϕ(K), ‖ · ‖ϕ).
Thanks to (1), {fn} is a Cauchy sequence in ‖ · ‖ (as well as in | · |ϕ). Since
fn ∈ C(K) for all n ∈ N and (C(K), ‖·‖) is complete, there exists f ∈ C(K)
such that fn ⇒ f (on K).
Being Cauchy in | · |ϕ, {fn} is necessarily bounded in this seminorm, thus
there is a constant P ∈ R such that

|fn(x)− fn(y)|
ϕ(|x− y|) < P ∀ n ∈ N, ∀ x, y ∈ K, x 6= y.

f is the uniform limit of fn, so by the limit passage we have

|f(x)− f(y)|
ϕ(|x− y|) = lim

n→∞
|fn(x)− fn(y)|

ϕ(|x− y|) ≤ P ∀ x, y ∈ K, x 6= y

in other words f ∈ C0,ϕ(K).
It remains to prove that fn converges to f in the ϕ-Hölder seminorm.
Set ε > 0. {fn} is Cauchy in that seminorm, hence there exists n0 ∈ N such
that

sup
x,y∈K
x 6=y

|fn(x)− fm(x)− fn(y) + fm(y)|
ϕ(|x− y|) < ε ∀ m,n ∈ N, m, n > n0.

Using the limit passage m →∞ we have

sup
x,y∈K
x 6=y

|fn(x)− f(x)− fn(y) + f(y)|
ϕ(|x− y|) ≤ ε ∀ n ∈ N, n > n0.

Since ε was arbitrarily chosen, |fn−f |ϕ → 0, the Cauchy sequence converges
(in ‖ · ‖ϕ), hence the space (C0,ϕ(K), ‖ · ‖ϕ) is complete and so is the proof.
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Definition 25. For ϕ ∈ H we denote

Bϕ := {f ∈ C0,ϕ(K) : ‖f‖ϕ ≤ 1},

the unit ball in C0,ϕ(K).

At this place let us just notice that when we need to prove that a space
(X, ‖ · ‖X) is compactly embedded into (Y, ‖ · ‖Y ), we do so by using the
definition, so we verify that the unit ball in X is relatively compact in Y .

Lemma 26. Suppose that ϕ ∈ H. Then C0,ϕ(K) ↪→↪→ C(K).

Proof. ‖f‖+ |f |ϕ = ‖f‖ϕ ≤ 1 for all f ∈ Bϕ, so Bϕ is bounded in ‖ · ‖.
Choose ε > 0. From (H2), we can find δ > 0 such that

ϕ(|x− y|) < ε ∀ x, y ∈ K, |x− y| < δ.

Since
|f(x)− f(y)| ≤ ϕ(|x− y|) ∀ f ∈ B̄ϕ, ∀ x, y ∈ K,

we have

|f(x)− f(y)| < ε ∀ f ∈ B̄ϕ, ∀ x, y ∈ K, |x− y| < δ.

Thus, Bϕ is equicontinuous, hence, by Arzelà-Ascoli Theorem, it is relatively
compact in (C(K), ‖ · ‖).

The next result will be useful for the proof of the main theorems dealing
with compact embeddings of Hölder spaces.

Lemma 27. Suppose ϕ,ψ ∈ H and it holds that

lim
t→0+

ψ(t)
ϕ(t)

= 0. (13)

Then, for every ε > 0, there exists a δ ∈ (0, 1) such that, for all f ∈ C(K):

|f |ϕ ≤ max
{

ε |f |ψ,
2 ‖f‖
ϕ(δ)

}
.

Proof. Set ε > 0. Since (13) holds, there exists δ ∈ (0, 1) such that

ψ(t)
ϕ(t)

< ε ∀ t ∈ (0, δ). (14)
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We have

|f |ϕ = sup
x,y∈K
x6=y

|f(x)− f(y)|
ϕ(|x− y|) =

= max





sup
x,y∈K

0<|x−y|<δ

|f(x)− f(y)|
ϕ(|x− y|) , sup

x,y∈K
δ≤|x−y|≤1

|f(x)− f(y)|
ϕ(|x− y|)




≤

≤ max





sup
x,y∈K

0<|x−y|<δ

(
ψ(|x− y|)
ϕ(|x− y|) ·

|f(x)−f(y)|
ψ(|x− y|)

)
, sup

x,y∈K
δ≤|x−y|≤1

|f(x)−f(y)|
ϕ(δ)




≤

≤ max
{

ε |f |ψ,
2 ‖f‖
ϕ(δ)

}
.

(We used (14) and the fact that ϕ is increasing.)

In the theorems involving continuous embeddings we needed some limit
superior to be a positive real number. If we want the embedding to be even
compact, the limit superior has to be zero, as we will see in the following.

Theorem 28. Consider functions ϕ,ψ ∈ H.

(i) If it holds that

lim
t→0+

ψ(t)
ϕ(t)

= 0, (15)

then C0,ψ(K) ↪→↪→ C0,ϕ(K).

(ii) If, moreover, ψ ∈ C0,ψ(K), then C0,ψ(K) ↪→↪→ C0,ϕ(K) if and only if
(15) holds.

Proof. (i) As it has been said above, we will prove that Bψ ⊂ C0,ψ(K) is
a relatively compact set in C0,ϕ(K). So, consider an arbitrary sequence
{fn}∞n=1 ⊂ Bψ. From Lemma 26, we know that {fn} has a subsequence
converging in ‖·‖. Without loss of generality, we assume that it is {fn} itself.
It means that there exists a f ∈ C(K) such that fn ⇒ f on K (because
C(K) is a Banach space). Of course, {fn} is then uniformly Cauchy (i.e.,
Cauchy in ‖ · ‖). We shall show that {fn} is Cauchy also in | · |ϕ.
Since fn ∈ Bψ for all n ∈ N, it holds for all m,n ∈ N that

‖fn − fm‖ ≤ 2 and |fn − fm|ψ ≤ 2. (16)
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Set ε > 0. By Lemma 27 there exists δ ∈ (0, 1) such that

|fn − fm|ϕ ≤ max
{

ε

4
|fn − fm|ψ,

2 ‖fn − fm‖
ϕ(δ)

}
∀ m,n ∈ N. (17)

Now, ‖fn‖ is uniformly Cauchy, hence there exists n0 ∈ N such that

‖fn − fm‖ ≤ εϕ(δ)
4

m,n ∈ N, m, n > n0.

Therefore, using (16) and (17) we have for all m,n ∈ N, m,n > n0:

|fn − fm|ϕ ≤ max
{

ε

4
|fn − fm|ψ,

2 ‖fn − fm‖
ϕ(δ)

}
≤ ε

2
< ε.

Hence, {fn} is Cauchy in | · |ϕ. Thus, it is Cauchy also in ‖ · ‖ϕ = ‖ · ‖+ | · |ϕ
and, by the completeness of C0,ϕ(K) (Theorem 24), {fn} converges
in C0,ϕ(K). Therefore, Bψ is relatively compact in C0,ϕ(K).
(ii) To prove necessity of (15), let us assume that ψ ∈ C0,ψ(K) but (15) does
not hold. Then we will show that Bψ is not relatively compact in C0,ϕ(K)
by constructing a sequence in Bψ which has no subseqence converging in
| · |ϕ.
Since (15) does not hold, there exists ε > 0 and a decreasing sequence
{tn}∞n=1 ⊂ (0, 1) such that tn ↘ 0 and

ψ(tn)
ϕ(tn)

> ε ∀ n ∈ N. (18)

Without loss of generality we assume that

tn < 2−n ∀ n ∈ N

and
ψ(tn) < 1 ∀ n ∈ N.

We know that ψ ∈ C0,ψ(K), thus ‖ψ‖ψ < ∞. Now define the sequence of
functions {fn}∞n=1 as

fn(t) :=





0 0 ≤ t < 2−n

ψ(t− 2−n)
2‖ψ‖ψ

2−n ≤ t < 2−n + tn

ψ(tn)
2‖ψ‖ψ

2−n + tn ≤ t ≤ 1.
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It is easy to verify that {fn} ⊂ Bψ. On the other hand, according to (18)
and the construction of the sequence, we have

|fm − fn|ϕ > ε ∀ m,n ∈ N, m 6= n,

therefore no subsequence of {fn} can converge in ‖ · ‖ϕ, hence Bψ is not
relatively compact in C0,ϕ(K) and the proof is finished.

Thanks to the results above we can now state the main theorem.

Theorem 29 (A characterization of existence of compact embeddings of
Hölder spaces). Consider functions ϕ, ψ ∈ H The following conditions are
equivalent:

(i) C0,ψ(K) ↪→↪→ C0,ϕ(K),

(ii) lim
t→0+

ψ̃(t)
ϕ(t)

= 0.

Proof. By Theorem 22, (i) holds if and only if C0,ψ̃(K) ↪→↪→ C0,ϕ(K) and,
according to Theorem 20 (iii) and Theorem 28, this is equivalent to (ii).

In Lemma 26 we showed that C0,ϕ(K) ↪→↪→ C(K). Similarly we can ask
if it holds that C1(K) ↪→↪→ C0,ϕ(K) for instance. The answer is positive
and not hard to prove.

Lemma 30. For any ϕ ∈ H it holds that

Lip(K) ↪→↪→ C0,ϕ(K) and C1(K) ↪→↪→ C0,ϕ(K).

Proof. Obviously C1(K)⊂Lip(K), thus consider ψ(t) = t and apply Theo-
rem 28. (See Remark 15.)

Our last results are connected to the spaces of functions on K whose
(first or higher) derivatives are Hölder functions. At least, it also explains
why the “zero” symbol is used in the notation C0,ϕ(K).

Definition 31. Let n be a positive integer and ϕ ∈ H. We define the space
Cn,ϕ(K) as

Cn,ϕ(K) := {f ∈ Cn(K) : f (n) ∈ C0,ϕ(K)}.
The norm of this space is defined as

‖ · ‖n,ϕ := ‖ · ‖n + | · |ϕ
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Theorem 32. Suppose that ϕ,ψ ∈ H and m,n are non-negative integers.
Then Cn,ψ ↪→↪→ Cm,ϕ if and only if one of the following conditions is
satisfied:

(i) m < n,

(ii) m = n and limt→0+
ψ̃(t)
ϕ(t) = 0.

Proof. The (i) part follows the fact that Cn,ψ ↪→↪→ Cm,ϕ if m < n. This
can be proven easily using the Arzelà-Ascoli theorem. The second part is
a consequence of Lemmas 26, 30 and Theorem 29.

As a last remark, we will show one particular example in which we apply
the previous results.

We have adopted a general approach employing the function ϕ ∈ H in
the definition of the Hölder fuctions. However, a narrower definition is also
quite common, using ϕ(t) := tα with α ∈ (0, 1) to establish the Hölder class
of functions.
Let us now focus on this particular case of Hölder functions a bit more.
For short we will denote by C0,α(K) the space of α-Hölder functions, i.e.,
the ϕ-Hölder ones for which ϕ(t) := tα (α ∈ (0, 1)). The norm ‖ · ‖α is
defined similarly.
Consider α, β ∈ (0, 1), non-negative integers m,n such that m + α < n + β
and the spaces Cm,α(K), Cn,β(K) equipped with the norms ‖ · ‖m,α and
‖ · ‖n,β respectively. (Cm,α(K) := Cm,ϕ(K), ϕ(t) := tα.)
From Theorem 32 we know that Cn,β ↪→↪→ Cm,α.
Now, for γ ≥ 0 and k = max {n ∈ N ∪ {0} : n ≤ γ} denote shortly

Cγ :=
{

Ck γ = k
Ck,γ−k else.

Notice that we have just shown a possibility how to extend the (countable)
sequence of spaces {C0(K), C1(K), C2(K), . . .} into the (uncountable) se-
quence {Cγ(K)}γ≥0 while preserving the property Cγ1(K) ↪→↪→ Cγ2(K) if
γ1 < γ2.
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