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Abstract

Lelek’s conjecture which states that metric continua with span zero are
chainable has been one of the most widely investigated problems in con-
tinuum theory over the past 40 years. We broaden our field of interest to
non-metric continua and prove that if there is a non-metric counterexample
to Lelek’s conjecture we can convert it to a metric one. For a continuum X
we take the lattice of all of its closed subsets 2X and consider a countable
elementary sublattice L of 2X that we represent by a metric continuum wL
via the Wallman representation for distributive lattices. By means of set
theory, we obtain an L such that X is not chainable if and only if wL is not
chainable and X has span zero if and only if wL has span zero. In the proof
of the latter we use Shelah’s theorem stating that every two elementarily
equivalent models have isomorphic ultrapowers.

Keywords: Chainability, span, elementarity
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1 Introduction

In the past 40 years, Lelek’s conjecture which states that metric continua
with span zero are chainable has been one of the most widely investigated
problems in continuum theory.

In his article [21], A. Lelek describes the span for metric spaces as follows:

“The span of a metric space is the least upper bound of num-
bers α such that, roughly speaking, two points can move over
the same portion of the space keeping a distance at least α from
each other. The surjective span is obtained if it is required that,
in addition, the whole space be covered by each of the moving
points. These geometric ideas turn out to be important in con-
tinua theory.”

More formally, the span of a compact metric space (X, d) is the supremum
of all numbers α such that there exists a subcontinuum Z of the square X×X
projecting on both axes on the same set with d(x, y) ≥ α for all (x, y) ∈ Z.
Span was first defined by Lelek in [19] in a more general setting of mappings.
In the same article, he proved that chainable implies span zero and the span
zero implies atriodic and dimension 1. Later ([20]), he raised the following
question

Question 1 (Lelek). Are metric continua having span zero chainable?

A positive answer to this question would solve the classification problem
of homogeneous plane continua ([27]).

Hence, much effort has been exerted to examine the span of metric con-
tinua. None of the properties observed so far is known to provide the answer
to Lelek’s question, although several weaker results have been obtained, many
of them using weaker variants of span (the first three are due to Lelek, the
last one is due to Davis)

• semispan - the condition on the subcontinuum Z in the definition of
span is relaxed to one projection being a subset of the other one,
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• surjective span - Z projects onto X in both coordinates

• surjective semispan - Z projects onto X in at least one coordinate

• symmetric span - Z is symmetric, which means that with every (x, y) ∈
Z also (y, x) ∈ Z.

Using the null-homotopy of mappings from spaces with span zero to one-
dimensional polyhedra, Lelek deduced that the continua of span zero are
tree-like (an inverse limit of connected graphs; see [23]). However, not every
atriodic tree-like continuum has span zero (see [16]).

Further, span zero is preserved by inverse limits, and continua with span
zero are weakly chainable (a continuous image of the pseudoarc; see [28]).

(Surjective) span and (surjective) semispan are not equal in general ([22]).
But (surjective) span zero and (surjective) semispan zero are equivalent ([8]),
which is essential in many results on span (for instance [7, 9, 11]).

It is an open problem whether chainabiliy or span zero are preserved by
confluent mappings. A mapping f : X → Y is confluent if every component
of a preimage of a subcontinuum C of Y maps onto C. Oversteegen gave a
partial answer to the second part of this problem in [26] by proving that if a
hereditarily indecomposable continuum X has span zero and f : X → Y is a
continuous surjective mapping whose square f × f is confluent, then Y has
span zero as well. Duda ([10]) generalized the result to all continua under
the condition that both f and its square f × f are confluent.

Striving for a counterexample to Question 1, we broaden our field of search
to non-metric continua. In chapter 3, we show that if there is a non-metric
counterexample, we can convert it to a metric one using a combination of
topology, lattice theory, model theory and set theory. Having a continuum
X, we consider a countable elementary sublattice L of the lattice 2X of all
closed subsets of X and assign to L a metric continuum wL that has a base
for closed subsets isomorphic to L. The points of the space wL are ultrafilters
on L and the closed sets for the topology are generated by the sets of the
form U(a) for a ∈ L, where U(a) consists of the ultrafilters to which a
belongs. This construction is due to Wallman ([31]). It is not surprising
that the space wL shares many properties with X. However, we were not
able to show that whenever X is non-chainable and of span zero, then so
is wL. Luckily, restricting ourselves to “special” elementary sublattices, we
achieve the desired result. To obtain the “special” elementary sublattices,
we consider the sets H(θ) (see [18]) that model ZFC-P (Zermelo-Frankel set
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theory with the Axiom of Choice and without the Power Set Axiom) and take
a countable elementary submodel M of H(θ) containing 2X as its element.
Then L = M ∩ 2X is a countable elementary sublattice of 2X of which we
know more than a general elementary sublattice. If K = M ∩ 2X×X , then
wL × wL and wK are homeomorphic. Knowing that, we are ready to prove
that if X is not chainable, neither is wL (Theorem 3.3.4, originally from [30])
and if X has span zero then so does wL (Theorem 3.3.6).

In the proof of Theorem 3.3.6 on reflection of span zero, we use the
statement that every two elementarily equivalent models have isomorphic
ultrapowers, which is a generalization of Keisler’s theorem ([17]) made by
Shelah ([29]). For the purpose of the continuum theory it was first used by
Gurevič([13]). We apply it to an elementary embedding f : K → 2X×X

for a continuum X, where K = M ∩ 2X×X for an elementary submodel
M of H(θ). Shelah’s theorem provides an ultrafilter U and an isomorphism
h :

∏

U
K →

∏

U
2X×X such that h◦∆ = ∆◦f, where ∆ denotes the elemen-

tary embedding of a structure into its ultrapower. Applying the Wallman’s
representation for lattices, which can be extended to lattice homomorphisms,
we get an onto mapping w(f) : X ×X → wK and a homeomorphism w(h) :
w(

∏

U
2X×X) → w(

∏

U
K) such that w(h) ◦ w(∆) = w(∆) ◦ w(f). The map-

ping w(∆) is called a codiagonal map and denoted by ∇, and w(
∏

U
2X×X) is

called the ultracopower of X×X and denoted by
∑

U
X×X (widely studied

by Bankston; [2, 3, 4]). We show that if Z ⊂ wL × wL = wK witnesses
some kind of span non-zero in wL (L = M ∩ 2X), then ∇ ◦ w(h)−1[

∑

U
Z]

witnesses the same kind of span non-zero in X.
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2 Preliminaries

Lattice theory combined with model theory is recognized to be a powerful tool
in the study of compact (Hausdorff) spaces. We are particularly interested in
continua, by which we mean connected compact Hausdorff spaces. A space is
connected if it cannot be written as a disjoint union of two non-empty open
sets.

2.1 Lattices

Definition 2.1.1 (Lattice). A partially ordered set (L,≤) is called a lattice
if every two elements a, b ∈ L have a supremum (also called join and denoted
by a ⊔ b) and infimum (called meet and denoted by a ⊓ b) in L. A lattice is
called bounded if it has a smallest and a largest element, usually denoted by
0 and 1 respectively. Every lattice can be made into a bounded lattice by
adding the greatest and the least element to the lattice.

Definition 2.1.2 (Lattice algebra). An algebra (L,⊔,⊓), where ⊔ and ⊓ are
binary operations, is called a lattice algebra if every three elements a, b, c ∈ L
satisfy the following equalities:

a ⊔ a = a
a ⊓ a = a

(2.1)

a ⊔ b = b ⊔ a
a ⊓ b = b ⊓ a

(2.2)

a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c
a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c

(2.3)

a ⊔ (a ⊓ b) = a ⊓ (a ⊔ b) = a (2.4)

A lattice algebra with constants 0,1 satisfying

a ⊔ 0 = a and a ⊓ 0 = 0 (2.5)

a ⊔ 1 = 1 and a ⊓ 1 = a (2.6)
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is called a bounded lattice algebra.
In other words, a (bounded) lattice algebra is a structure for the language

{⊔,⊓} ({⊔,⊓,0,1}) that models the universal closure of the formulae above.

Lemma 2.1.3. Every (bounded) lattice satisfies the equalities in the defini-
tion of (bounded) lattice algebra. If L is a lattice algebra, then putting a ≤ b
if and only if a ⊔ b = b (or equivalently a ⊓ b = a), we obtain a lattice order
‘≤’ on L. If L is bounded, then 0 and 1 are the smallest and the largest
elements of (L,≤)

In what follows, by lattice L we mean a bounded lattice (L,≤) (or equiv-
alently a bounded lattice algebra (L,⊔,⊓,0,1)).

Example 2.1.4. Let X be a topological space and let 2X denote the set of
all its closed subsets. Then 2X with the operations union and intersection,
and constants empty set and X forms a lattice. The order in this lattice is
given by set inclusion. Every base for the closed sets in X closed under finite
unions and finite intersections is an example of a sublattice of 2X . In what
follows we call such a base a lattice base.

If a lattice L has the following three properties, then we can find a com-
pact Hausdorff space that has a lattice base isomorphic to L.

Definition 2.1.5 (Distributive lattice). A lattice L is called distributive if
for every triple a, b, c ∈ L the following equation holds:

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c), (2.7)

or equivalently
a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c) (2.8)

Definition 2.1.6 (Disjunctive lattice). A lattice L is called disjunctive if it
models the sentence

∀ab ∃c (a � b → c 6= 0 ∧ c ≤ a ∧ b ⊓ c = 0).

Definition 2.1.7 (Normal lattice). A lattice L is called normal if it models
the sentence

∀ab ∃cd (a ⊓ b = 0 → a ⊓ d = 0 ∧ b ⊓ c = 0 ∧ c ⊔ d = 1).

The underlying set of the space assigned to L will be the set of all ultra-
filters on the lattice L.
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Definition 2.1.8 ((Ultra)filter).

• We call a non-empty subset F of a lattice L a filter on L if it satisfies
the following conditions:

(i) if a ∈ F , b ∈ L and a ≤ b then b ∈ F ,

(ii) if a, b ∈ F then a ⊓ b ∈ F .

• A filter on L is proper if it is not equal to L.

• A filter F is called prime if a ⊔ b ∈ F implies a ∈ F or b ∈ F .

• A proper filter is called maximal (or an ultrafilter) when L contains no
larger proper filters.

• For an element a ∈ L, the filter consisting of all elements of L that are
larger or equal to a is called principal.

It is easy to see that every subset of a lattice closed under finite meets
can be extended to an ultrafilter.

2.2 Wallman’s representation theorem

In [31], H. Wallman extended the Stone duality between Boolean algebras
and totally disconnected compact Hausdorff spaces, to distributive lattice
and compact T1-spaces. However, what he obtained is not a full duality, as
it assigns to numerous lattices the same space.

Theorem 2.2.1. Let L be a distributive lattice. Then there is a compact
T1-space X with a base for closed sets being a homomorphic image of L. If
L is also disjunctive, then X has a base for closed sets isomorphic to L. X
is Hausdorff if and only if L is normal.

Proof. We take as the points of X the set of all ultrafilters on L and the sets
U(a) = {x ∈ X : a ∈ x} as a base B for the closed sets for the topology on
X.

It is easy to see that for every a, b ∈ L we have U(a ⊓ b) = U(a) ∩ U(b)
and U(a⊔ b) = U(a)∪U(b). Thus the map U : L → 2X from L to the lattice
of all closed subsets of X given by a 7→ U(a) is a homomorphism onto B.
Let L be also disjunctive. For every a 6= b either a � b or b � a. Without
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loss of generality assume that a � b. From disjunctivity, there is c 6= 0 such
that c ≤ a and c ⊓ b = 0. Any ultrafilter that contains c contains also a
but cannot contain b, hence U(a) 6= U(b). So U is one-to-one onto its image,
which means that L and B are isomorphic.

We show that X is compact. Let B′ be a subset of B having the finite
intersection property. We have that B′ = {U(a) | a ∈ L′}, for some L′ ⊂ L.
As U(a⊓ b) = U(a)∩U(b), all finite meets of elements from L′ are non-zero,
hence there is an ultrafilter x extending L′. Then x ∈ U(a) for every a ∈ L′,
so x ∈

⋂

B′ 6= ∅.
Since {U(a) | a ∈ L} is a base for closed sets, {x} =

⋂

{U(a) | a ∈ x}.
For any two distinct points x and y in X, there are a ∈ x \ y and b ∈ y \x. It
gives that y ∈ X \ U(a) whilst x ∈ U(a) and x ∈ X \ U(b) whilst y ∈ U(b).
Thus X is T1.

Let L be normal. Take two distinct points in X, say x and y. For every
a ∈ x \ y, there is b ∈ y such that a ⊓ b = 0 (otherwise y would not be
maximal). By normality, there are c, d ∈ L such that d ⊓ a = 0, c ⊓ b = 0
and c ⊔ d = 1. Obviously, a ≤ c and b ≤ d. Consider open neighbourhoods
O1 = X \ U(c) of y and O2 = X \ U(d) of x. We show that O1 ∩ O2 = ∅.
Suppose that there is an ultrafilter u missing both c and d, in other words,
there exists j ∈ u such that j ⊓ c = 0 = j ⊓ d. From distributivity, j =
j ⊓ (c ⊔ d) = (j ⊓ c) ⊔ (j ⊓ d) = 0, which is a contradiction. Thus L being
normal implies X being Hausdorff.

For the reverse implication, suppose that the space X is compact Haus-
dorff, hence normal. For any two elements a, b ∈ L with a ⊓ b = 0, take the
corresponding closed subsets U(a) and U(b) of X. As U(a)∩U(b) = U(a⊓b) =
∅, we can find open sets O and V from the open base {X \ A | A ∈ L} such
that U(a) ⊂ O, U(b) ⊂ V and O ∩ V = ∅. Then X \ O and X \ V belong to
L and satisty U(a) ∩ X \ O = ∅, U(b) ∩ X \ V = ∅ and X \ V ∪ X \ O = X.
We can conclude that L is normal.

To emphasize that a space is the Wallman representation for a distributive
lattice L, we will denote it wL. When the lattice L is isomorphic to a lattice
base for closed subsets in wL, we use the same letter for an element of L and
the corresponding closed subset of wL.

Given a T1-space X and L any lattice base for X, then the Wallman’s
representation wL of L is a compact space that contains X as its dense
subset. We call X∗ the Wallman-Čech compactification of X. If X is normal,
then wL is equal to the Čech-Stone compactification β(X) of X.
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Remark 2.2.2. If X is a compact Hausdorff space and 2X the lattice of all
its closed subsets, then the Wallman’s representation of 2X is again X (be-
cause of the finite intersection property of 2X , all the ultrafilters on 2X are
principal). Even more is true: If B is a lattice base for X then wB = X :
the map x 7→ {b ∈ B | x ∈ b} is a homeomorphism. The reason is that for
every a, b ∈ 2X with a ⊓ b = 0 there are c, d ∈ B such that a ≤ c, b ≤ d and
c ⊓ d = 0.

Let F be a proper filter on a distributive lattice L. In the set of all filters
containing F we can introduce lattice operations as follows:

F1 ⊓ F2 = {a ⊓ b | a ∈ F1, b ∈ F2}

F1 ⊔ F2 = {a ⊔ b | a ∈ F1, b ∈ F2}.

Then the map a 7→ ( the filter generated by {a} ∪ F) is a lattice homomor-
phism. Let us denote the image of L under this homomorphism by L/F .

Proposition 2.2.3. w(L/F) is homeomorphic to the subspace of w(L) con-
sisting of the ultrafilters on L extending F .

Wallman’s representation can be extended to homomorphisms between
normal distributive disjunctive lattices. Indeed, let f : A → B be such a
homomorphism. For q ∈ wB, define w(f)(q) = {a ∈ A | f(a) ∈ q}. Then
w(f)(q) is a proper prime filter on A, which has a unique extension to an
ultrafilter (thanks to normality). So we can think of w(f)(q) as of a point
in wA. As w(f)−1[a] = f(a) the map w(f) is continuous. If f is one-to-one,
then w(f) is onto.

It is easy to verify that the Wallman’s representation gives us a functor
w from the category of normal distributive disjunctive lattices and lattice-
homomorphisms to the category of compact Hausdorff spaces and continuous
functions.

2.3 Elementarity and ultra(co)products

Fix a first-order language L. We denote both an L-structure and its under-
lying set by the same letter and the cardinality of the underlying set by |·|.
For an extensive study on model theory see for instance books [6] or [15].
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Definition 2.3.1. Let A and B be two structures for the language L. We
say that B is an elementary substructure of A (denoted by B ≺ A) if B is a
substructure of A and for every formula φ(x1, . . . , xn) and a1, . . . an ∈ B

B |= φ[a1, . . . , an] if and only if A |= φ[a1, . . . , an].

The following result provides a useful tool to verify whether an L-structure
is an elementary substructure of a given L-structure.

Theorem 2.3.2 (Tarski’s test). Let A and B be two L-structures with B ⊂
A. B is an elementary substructure of A if and only if for every formula
φ(x1, . . . , xn, y) and any n-tuple (a1, . . . , an) from B if A |= ∃y φ[a1, . . . , an]
then there is b ∈ B such that A |= φ[a1, . . . , an, b].

The famous Löwenheim-Skolem theorem from the beginning of the 20th
century states that there are many elementary substructures for every infinite
structure. The proof can be found for instance in [6].

Theorem 2.3.3 (Löwenheim-Skolem). Let A be an infinite L-structure and
let X ⊂ A. Denote κ = max(|L| , |X|). Then for every cardinal λ such that
κ ≤ λ ≤ |A| , there exists an elementary substructure B of A such that
X ⊂ B and |B| = λ.

Definition 2.3.4 ((Ultra)filter). By a filter on a non-empty set I we mean
a subset U of the power set of I such that

(i) I ∈ U ,

(ii) if F,G ∈ U then F ∩ G ∈ U ,

(iii) if F ⊂ G ⊂ I and F ∈ U then G ∈ U .

The filter U is called an ultrafilter if in addition it holds

(iv) F ∈ U if and only if I \ F /∈ U .

Remark 2.3.5. In the section on lattices, we defined an ultrafilter to be a
maximal proper filter on a lattice. That definition agrees with the one given
above, since the ultrafilters on a set are exactly the maximal proper filters
on the lattice of all subsets of I.
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We use an ultrafilter on a set to construct an L-structure (called ul-
traproduct) from a given family of L-structures, that satisfies a first-order
formula if and only if ultrafilter many members of the family satisfy the
formula.

Definition 2.3.6 (Ultraproduct). Let 〈Ai | i ∈ I〉 be a family of L-structures
with I a non-empty set and let U be an ultrafilter on the set I. The ultraprod-
uct of 〈Ai | i ∈ I〉 is an L-structure denoted by

∏

U
Ai with the underlying

set the Cartesian product
∏

i∈I Ai in which we identify two functions f and
g (f ∼ g) whenever {i ∈ I | f(i) = g(i)} ∈ U . It is easy to see that ‘∼’ is an
equivalence relation. We denote the equivalence class of the function f by
[f ]U .

The interpretation of the signature of L in
∏

U
Ai is as follows.

If Gi is the interpretation of a function symbol F of L in Ai, define the
interpretation G of F in

∏

U
Ai by G([f1]U , . . . , [fn]U) = [f ]U if and only if

{i ∈ I | Gi(f1(i), . . . , fn(i)) = f(i)} ∈ U .
If Ri is the interpretation of a relation symbol P of L in Ai, define the

interpretation R of P in
∏

U
Ai by R([f1]U , . . . , [fm]U) if and only if {i ∈

I | Ri(f1(i), . . . , fm(i))} ∈ U .
If di is the interpretation of a constant c of L in Ai, define the interpre-

tation [d]U of c in
∏

U
Ai as the class of the function d(i) = ci.

If all the structures in the family are equal to some L-structure A, we call
their ultraproduct an ultrapower and denote

∏

U
A.

For correctness of the definition, see for instance [6].

Theorem 2.3.7 (The Fundamental Theorem of Ultraproducts). For any
L-formula φ(x1, . . . , xn) and any n-tuple [f1]U , . . . , [fn]U from

∏

U
Ai,

∏

U

Ai |= φ[[f1]U , . . . , [fn]U ] if and only if {i ∈ I | Ai |= φ[f1(i), . . . , fn(i)]} ∈ U .

Idea of the proof. The proof goes by induction on the complexity of the for-
mula φ. The base step of the induction is when φ is an atomic formula. The
complete proof is given for example in [6].

Corollary 2.3.8. The diagonal embedding of an L-structure A into its ultra-
power

∏

U
A, sending a point a ∈ A to [(a)i]U , is an elementary embedding.
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The following powerful theorem saying that every two elementarily equiv-
alent models have isomorphic ultrapowers is due to Shelah ([29]). It general-
izes Keisler ([17]) who assumed the general continuum hypothesis. We will
need the theorem in its full power in the proof of the reflection of span zero.

Theorem 2.3.9 (Shelah). Let κ be a cardinal, λ = min{µ | κµ > κ} and let
A and B be two elementarily equivalent L-structures with card(A), card(B) <
λ. Then there exists an ultrafilter U over κ such that

∏

U
A and

∏

U
B are

isomorphic.

Definition 2.3.10 (Topological ultraproduct). Let 〈Xi | i ∈ I〉 be a family
of topological spaces, I a non-empty index set and U an ultrafilter on I.
The topological ultraproduct

∏

U
Xi is the topological space whose points

are the elements of the ultraproduct of the underlying sets and the topology
is generated by “open ultraboxes”

∏

U
Oi, where each Oi is open in Xi. If all

the spaces in the family are the same, we call their topological ultraproduct
a topological ultrapower

We can define an ultraproduct in the purely categorial language as follows:

Definition 2.3.11 (Categorial ultraproduct). Let C be a category, let 〈Ci | i ∈
I〉 be a family of C-objects and let U be an ultrafilter on I. Consider the di-
agram consisting of objects of the form

∏

i∈J Ci for J ∈ U and morphisms
being the natural projections

∏

i∈J Ci →
∏

i∈K Ci for J,K ∈ U , J ⊃ K. We
call the direct limit of this diagram a categorial ultraproduct of the family
〈Ci | i ∈ I〉.

For the category of L-structures, this definition agrees with the one given
before.

However, in the category of topological spaces, the categorial ultraproduct
is an indiscrete space whenever the given ultrafilter is countably incomplete.
So the topological ultracoproduct usually fails to be equal to the categorial
one.

On the other hand, categorial dualization of the ultraproduct notion, so
called ultracoproduct, turned out to be a useful tool in the study of topolog-
ical spaces.

Definition 2.3.12 (Ultracoproduct). Let C be a category, let 〈Ci | i ∈ I〉 be
a family of C-objects and let U be an ultrafilter on I. Consider the diagram
consisting of objects of the form

∐

i∈J Ci for J ∈ U and morphisms being the

14



natural morphisms
∐

i∈J Ci →
∐

i∈K Ci for J,K ∈ U , J ⊂ K. We call the
inverse limit of this diagram a ultracoproduct of the family 〈Ci | i ∈ I〉 and
denote it by

∑

U
Ci.

The Stone duality shows that in the category of Stone spaces, the ultraco-
product is the Stone space of the Boolean algebra which is the ultraproduct
of Boolean algebras of the spaces in the diagram.

The next two lemmas give concrete descriptions of ultracoproduct in the
category of compact Hausdorff spaces, first by purely topological means and
the other one by Wallman’s represenation theorem.

For a Tychonoff space X let β(X) denote the Čech-Stone compactification
of X.

Lemma 2.3.13. Let 〈Xi | i ∈ I〉 be a family of compact Hausdorff spaces
with I a non-empty index set and let U be an ultrafilter on I. Denote q :
⋃

i∈I Xi × {i} → I the map sending each point to its second coordinate with

I taken as a discrete space. Let β(q) : β(
⋃

i∈I Xi × {i}) → β(I) be the Čech-
Stone lifting of q. Then the ultracoproduct of 〈Xi | i ∈ I〉 with respect to U
is homeomorphic to (β(q))−1[U ].

Proof. Follows from
∐

U

Xi = β(
⋃

i∈I

Xi × {i}).

Lemma 2.3.14. Let 〈Xi | i ∈ I〉 be a family of compact Hausdorff spaces
with I a non-empty index set and let U be an ultrafilter on I. Let Bi be a
lattice base for Xi. Then the ultracoproduct of 〈Xi | i ∈ I〉 with respect to U
is homeomorphic to w(

∏

U
Bi).

Proof. We saw in Section 2.2, that we can assume that Bi is the lattice of
all closed subsets of Xi for every i. The ultraproduct

∏

i∈I Bi forms a lattice
base for

⋃

i∈I Xi × {i}, so w(
∏

i∈I Bi) = β(
⋃

i∈I Xi × {i}). We can regard
U as a filter on

∏

i∈I Bi consisting of the points (bi)i∈I ∈
∏

i∈I Bi such that
{i ∈ I | bi = Xi} ∈ U . Then

∏

U
Bi is isomorphic to

∏

i∈I Bi/U defined in
Section 2.2. Proposition 2.2.3 finishes the proof.

As
∏

U
Bi is obviously a lattice base for the topological ultraproduct

∏

U
Xi, we get the following corollary.
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Corollary 2.3.15.
∑

U
Xi is the Wallman-Čech compactifiction of

∏

U
Xi.

Next definition is a natural dualization of the diagonal embedding.

Definition 2.3.16 (Codiagonal map). Let X be a compact Hausdorff space
and U an ultrafilter on I. The codiagonal map ∇ :

∑

U
X → X sends a point

p to x if and only if for each open neighbourhood U of x the ultrapower
∏

U
U

contains a member of p.

A topological and a Wallman-type description of the codiagonal map
follow.

Lemma 2.3.17. Let β(p) : β(X × I) → β(X) be the Čech-Stone lifting of
the map p : X × I → X sending each point to its first coordinate. Then the
codiagonal map is the restriction of β(p) to the ultracoproduct.

Lemma 2.3.18. Let ∆ : A →
∏

U
A be the diagonal embedding of a distribu-

tive disjunctive normal lattice A to its ultrapower. Then w(∆) = ∇.

Proposition 2.3.19. The clopen algebra of the ultracoproduct
∑

U
Xi is iso-

morphic with the ultracoproduct of the clopen algebras of Xi’s. In particular,
∑

U
Xi is connected if and only if {i | Xi is connected } ∈ U .

Definition 2.3.20. Let φi : Xi → Yi for i ∈ I be continuous mappings
between continua and let U be an ultrafilter on I. Let φ be the sum of the
maps 〈φi | i ∈ I〉 and β(φ) the Čech-Stone lifting of φ. The ultracoproduct
of maps 〈φi | i ∈ I〉 (denoted by

∑

U
φi) is the restriction of β(φ) to the

ultracoproduct
∑

U
Xi.

2.4 Elementary sublattices

Elementarity turned out to be a useful tool in the theory of compact Haus-
dorff spaces. If X is a compact Hausdorff space and 2X the lattice of all its
closed subsets, the Wallman’s representation of any elemetary sublattice of
L of 2X is also compact Hausdorff, because being normal, distributive and
disjunctive are expressible by a first-order formula.

Existence of elementary sublattices of any infinite cardinality up to the
cardinality of the original lattice is given by the Löwenheim-Skolem theorem.
We often want to convert a non-metric compact space X to a metric one.
That can be achieved by taking elementary sublattices of 2X of countable
cardinality:
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Theorem 2.4.1. Let L be a normal distributive disjunctive lattice of count-
able cardinality. Then wL is compact, Hausdorff and metrizable.

Proof. From Wallman’s representation theorem we know that wL is compact
Hausdorff, hence normal, and that L is isomorphic to a base for closed set in
wL. By Urysohn’s metrization theorem wL is metrizable.

We are interested in what properties of compact Hausdorff spaces are
inherited by the Wallman’s representations of all elementary sublattices of
the lattice of all closed sets. We call such properties elementarily reflected.

Sometimes it is useful to know more about the structure of the elementary
sublattice. We can accomplish that by using models for almost all of set
theory to get elementary sublattices. Recall that for a cardinal θ, H(θ)
denotes the set of all sets whose transitive closure has cardinality less then θ.
These sets are very important and useful because if θ is uncountable regular
then

H(θ) |= ZFC - P (see Chapter IV in [18]) .

When proving a property of some object, the arguments use only a limited
number of sets. So there is θ large enough to guarantee that H(θ) contains
all sets needed (for example, see Levy Reflection Theorem, Chapter IV in
[18]). In the main chapter we choose a cardinal θ large enough so that H(θ)
contains all sets necessary to investigate the properties we deal with.

Löwenheim-Skolem theorem now provides elementary submodels of H(θ).
If we take an elementary submodel M of H(θ) that contains 2X as its element,
then M∩ 2X is an elementary sublattice of 2X that contains all elements of
2X expressible by a formula in the language of set theory with coefficients
in M and we can see more of its behaviour from outside within the frame
of the model M. Thus the Wallman’s representation of M∩ 2X shares more
properties with the compactum X. The properties that are inherited from
X by the Wallman’s representation of M∩ 2X for any 2X ∈ M ≺ H(θ) are
called elementarily reflected by submodels.

An important class of properties that are elementarily reflected are those
that do not depend on the choice of the lattice base. This leads to the notion
of a base-free formula that is due to Bankston (for instance [5]). A lattice
formula φ is called base-free if for any compact space X and any lattice base
B for closed sets of X

B |= φ if and only if 2X |= φ.

17



For example connectedness, (hereditarily) indecomposability and having
covering dimension less or equal to n ∈ ω are properties that can be expressed
by a base-free formula ([5]).

As we are particulary interested in continua, we give two proofs that
being connected is elementarily reflected. First showing that connectedness
is expressible by a base-free formula and then deriving some properties of
w(e), the Wallman’s representation of the elementary embedding e of an
elementary sublattice L of 2X into 2X .

Let conn(z) denote the following formula

conn(z) = ∀xy (x ⊔ y = z ∧ x ⊓ y = 0 → x ⊓ z = 0 ∨ y ⊓ z = 0).

So for compact space X and a ∈ 2X , conn[a] is true if and only if a is a
connected subset of X.

To prove that conn[1] is base-free, we will need the following lemma.

Lemma 2.4.2. Let X be a compact Hausdorff space and B a lattice base for
X. If F ⊂ O, where F is a closed and O an open subset of X then there is
a B ∈ B such that F ⊂ B ⊂ O.

Theorem 2.4.3. The lattice sentence conn[1] expressing the connectedness
is base-free.

Proof. Let X be a compact Hausdorff space and B a lattice base for X.
Obviously

2X |= conn[1] implies B |= conn[1].

For the converse, suppose that B |= conn[1]. If X is not connected, then
Lemma 2.4.2 provides F and G from B witnessing disconectivity of X. It
means that

B |= ∃FG (F 6= 0 ∧ G 6= 0 ∧ F ⊔ G = 1 ∧ F ⊓ G = 0),

which contradicts B modelling conn[1].

Let L be an elementary sublattice of 2X and let e : L → 2X denote
the elementary embedding. Applying the functor w, we get the continuous
mapping w(e) : X → wL sending a point x to the ultrafilter {A ∈ L | x ∈ A}.
As e is one-to-one, w(e) is obviously onto. Combining that with X being
compact and wL Hausdorff, w(e) is closed. Lemma 2.8 in [4] shows that w(e)
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is even weakly confluent (a map between two continua A and B is weakly
confluent if for every subcontinuum C of B there is a subcontinuum of A that
maps onto C). Hence many properties of compact spaces are elementarily
reflected.

Theorem 2.4.4. Being connected is a property of compact spaces that is
elementarily reflected.
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3 Chainability, span and their
reflection

In this chapter, we introduce two important properties for continua, chain-
ability and span. In [19], Lelek showed that every chainable continuum has
span zero and later he conjectured the converse. We give the proof of his
result for arbitrary continua ([30]) and show that his conjecture can be gen-
eralized to non-metric spaces. Namely, we show that if there is a non-metric
counterexample to Lelek’s conjecture, then, using elementarity, we find a
metric one.

3.1 Chainability

Definition 3.1.1 (Chain). Let X be a continuum. A chain is a nonempty,
finite collection C = {C1, . . . , Cn} of open subsets Ci of X such that Ci∩Cj 6=
∅ if and only if |i − j| ≤ 1. The elements Ci of C are called links of the chain
C.

Definition 3.1.2 (Chainability). A continuum X is chainable if every open
cover has an open cover refinement which is a chain.

Remark 3.1.3. The definition above agrees with the definition of chainable
for metric continua which states that a metric continuum X is chainable if
for every ε > 0 there is a chain covering X such that all of its elements have
the diameter less than ε. Chainable metric continua are sometimes called
arc-like, as these two properties are known to be equivalent (see for instance
[24]).

We prove that chainability can be rephrased in terms of a lattice base
only. For that, we need a well-known theorem on shrinkings. A shrinking
of a cover {Oi}i∈I of a space X is a cover {Ui}i∈I of the space X such that
Ui ⊂ Oi for every i.
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Theorem 3.1.4. ([12]) Every finite open covering {Vi}
k
i=1 of a normal space

X has shrinkings {Fi}
k
i=1 and {Wi}

k
i=1 of functionally closed and functionally

open sets respectively such that Fi ⊂ Wi ⊂ W i ⊂ Vi for all i = 1, . . . , k.

Theorem 3.1.5. Let B be an open base for a continuum X closed under
finite unions and finite intersections. Then X is chainable if and only if
every open cover consisting of sets from B has a chain refinement in B.

Proof. Take V = {Vi}
k
i=1 ⊂ B an open cover of X. If X is chainable, then

there is an open chain refinement C = {Ci}
n
i=1 of V . By 3.1.4 there is a

shrinking {Di}
n
i=1 of C consisting of functionally open sets such that Di ⊂ Ci

for all i. By connectedness the family {Di}
n
i=1 is still a chain. By compactness

(and closure under finite unions) there are Bi in B such that Di ⊂ Bi ⊂ Bi ⊂
Ci for every i ≤ n.

To prove that chainability is elementarily reflected, it would be handy if it
was expressible in the lattice language. There we are only partially successful,
since the following formula expressing chainability uses a disjunction over
natural numbers, which leads to need of the logic Lω1ω.

Let φm(u1, . . . , um) be the following formula in the lattice language in the
logic Lω1ω.

u1 ⊓ . . . ⊓ um = 0 →
∨

n

∃v1 . . . vnθ(u1, . . . , um; v1, . . . , vn), (3.1)

where θ(u1, . . . , um; v1, . . . , vn) is the conjunction of the following formulas

(i) v1 ⊓ . . . ⊓ vn = 0

(ii)
∧

i

∨

j vi ≥ uj

(iii)
∧n−1

i=1
vi ⊔ vi+1 6= 1 ∧

∧n−2

i=1

∧n

j=i+2
vi ⊔ vj = 1.

Translated into open covers, for a finite open cover {wL\ui | i < m} there
is a finite open cover {wL\vi | i < n} (by item (i)) refining {wL\ui | i < m}
(by item (ii)). Finally, the formula (iii) expresses that {wL\vi | i < n} forms
a chain. Applying Lemma 3.1.5, we get the following

Lemma 3.1.6. Let L be a normal distributive disjunctive lattice. Its Wall-
man’s representation wL is chainable if and only if

L |= ∀u1 . . . um φm(u1, . . . , um) for all m < ω.
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Remark 3.1.7. As the unit interval [0, 1] is chainable but its ultracopower
over ω is not chainable (see [14]), chainability is not a first-order property in
the language of lattices.

However, in the language of the set theory, {∈}, the formula 3.1 becomes
a first-order formula

u1 ⊓ . . . ⊓ um = 0 → (∃n ∈ ω)(∃v ∈ Ln)θ(u1, . . . , um; v).

We rely on that in the proofs of the reflection of chainability and non-
chainability by submodels (if M is an elementary submodel of H(θ), then
ω ∈ M).

3.2 Span

In [19], Lelek introduced the notion of span for metric spaces. Let (X, d) be
a metric space. We shall denote by π1 and π2 the projections of the square
X × X onto its axes. The span σX of the space X is defined to be the
supremum of numbers ε for which there is a connected subset Z of X × X
such that

(i) π1[Z] = π2[Z]

(ii) d(x, y) ≥ ε for (x, y) ∈ Z

If we drop the metric from the definition, we can only distinguish between
span zero and non-zero. As span turned out to be particularly useful in the
continuum theory, we give the following definition.

Definition 3.2.1 (Span). A continuum X has span zero if every subcon-
tinuum Z of X × X, which projects onto the same set on both coordinates,
has a nonempty intersection with the diagonal ∆X = {(x, x) | x ∈ X} of X.
Otherwise we say that X has span non-zero.

In [21], Lelek defined variations of span, so called surjective span and
surjective semispan, by changing the conditinions on the projections of the
subcontinuum Z of X × X in the definition of span to π1[Z] = π2[Z] = X
and π1[Z] ⊂ π2[Z] = X respectively.

Relaxing the metric from the definition, we obtain the following definition.
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Definition 3.2.2. A continuum X has the surjective (semi)span zero if every
subcontinuum Z of X × X, which projects onto X in both coordinates (at
least in one coordinate), has a nonempty intersection with the diagonal ∆X

of X. Otherwise we say that X has surjective (semi)span non-zero.

Lelek showed that span and surjective span need not be equal ([21]) and
neither span and semispan do ([22]). However, Davis ([8]) proved that having
span zero and having semispan zero are equivalent for metric continua. For
his proof he defined a new kind of span, the symmetric span.

We call a subset A of the square X × X symmetric if A = A−1, where
A−1 = {(x, y) | (y, x) ∈ A}.

Definition 3.2.3 (Symmetric span). Let X be a continuum. X has the sym-
metric span zero if for every symmetric subcontinuum Z of the square X×X
the intersection of Z with the diagonal ∆X of X is non-empty. Otherwise X
has the symmetric span non-zero.

Theorem 3.2.4. Every chainable continuum has span zero.

Proof. Let X be a chainable continuum with non-zero span. Let Z be a
subcontinuum of X ×X that misses the diagonal ∆X . There exists an open
set U ⊂ X×X such that ∆X ⊂ U and U ∩Z = ∅. So for every x ∈ X we can
choose an open subset Ux of X such that Ux×Ux∩Z = ∅. As X is chainable,
the open cover {Ux | x ∈ X} has a finite chain refinement {V1, . . . , Vn}. Define
two open subsets U1 and U2 of X × X as follows:

U1 =
⋃

i,j<n, i<j

Vi × Vj

U2 =
⋃

i,j<n, i>j

Vi × Vj.

Then U1 ∪U2 ⊃ Z and U1 ∩U2 ∩Z = ∅. If not, Z would intersect Vi × Vi for
some i, which contradicts Vi being a subset of some Ux. Thus Z is the union of
two disjoint nonempty open (in Z) sets U1∩Z and U2∩Z. By connectedness
of Z, one of these sets must be empty, say U2 ∩ Z. So π2[Z] ⊂ π2[U1] 6= X,
which means that surjective span is zero. As chainability is hereditary, it
implies that span is zero as well. Since Z ⊂ U1 and Z misses all Vi × Vi, Z
cannot be symmetric and hence also symmetric span must be zero.
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3.3 Reflection

Let θ be a cardinal large enough so that H(θ) contains all sets needed in the
reasonings below (see the section on Elementary sublattices).

For a continuum X, let 2X (resp. 2X×X) denote the lattice of all closed
subset of X (resp. X ×X). Let M be an elementary submodel of H(θ) that
contains 2X as one of its elements. As the following sets are expressible by a
set-theoretical formula with coefficients in M, they are elements of M.

X, X ×X, 2X×X , πi : X ×X → X, the diagonal ∆X of X, ∅, all natural
numbers, the set of all natural numbers ω.

Hence L = M∩ 2X and K = M∩ 2X×X are elementary sublattices of 2X

and 2X×X respectively.
In this section we present the proofs of the reflection of chainability, non-

chainability and span non-zero by submodels from the dissertation [30]. We
prove that also having span zero is elementarily reflected by submodels. Thus
we have a substantially larger class of spaces to look for a counterexample to
Lelek’s conjecture. Indeed, if there exists a non-metric continuum X that has
span zero but is not chainable, then taking M to be countable, the Wallman
representation of L = M ∩ 2X will be a metric continuum with span zero,
that is not chainable.

Theorem 3.3.1. wK and wL × wL are homeomorphic.

Proof. Define the map ι : wK → wL × wL, by

ι(p) = ({π1[A] | A ∈ p}, {π2[A] | A ∈ p}).

Claim 1. ι(p) ∈ wL × wL for all p ∈ wK.

Proof. By elementarity, π1[A] ∈ L, whenever A ∈ K, and B×X ∈ K, when-
ever B ∈ L. Since p has the finite intersection property, so does {π1[A] | A ∈
p}. Take any U ∈ L such that U ∩ π1[A] 6= ∅ for all A ∈ p. Then π−1

1 [U ] =
U × X intersects all elements of p and lies in K. Since p is maximal, U × X
must be an element of p, so {π1[A] | A ∈ p} is an ultrafilter on L and
hence a point of wL. Analogously, {π2[A] | A ∈ p} ∈ wL. We proved that
Im(ι) ⊂ wL × wL.

Claim 2. ι is surjective.
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Proof. Let (q, r) ∈ wL × wL. Thanks to elementarity, the set S = {A ×
X,X × B | A ∈ q, B ∈ r} is a subset of K. Since q and r have the finite
intersection property and (A×X)∩ (X ×B) = A×B ∈ K, S has the finite
intersection property as well. Thus there exists a point p ∈ wK extending S.
Previous claim showed {π1[A] | A ∈ p} ∈ wL. But also, {π1[A] | A ∈ p} ⊃ q.
By maximality of q, {π1[A] | A ∈ p} = q. Similarly, {π2[A] | A ∈ p} = r.
Thus ι(p) = (q, r) and Im(ι) = wL × wL.

Claim 3. ι is injective.

Proof. Suppose that there are p 6= s ∈ wK with ι(p) = ι(s). As p 6= s,
there are A ∈ p and B ∈ s such that A ∩ B = ∅. By elementarity, there are
open disjoint subsets U and V containing A and B respectively with disjoint
closures in M. For every point in A there is a pair of open subsets of X
such that their product contains the point and its closure is contained in the
closure of U. As A is compact, we can find finitely many of these pairs such
that their products cover A. Since ω ∈ M, by elementarity we can find a
finite number of pairs of elements of L the products of which cover A and
a finite number of elements of L whose products cover B, with their unions
disjoint. Since K contains all the products of pairs of elements from L and
p and s are maximal filters, p and s contain a product of elements of L with
empty intersection, which contradicts ι(p) = ι(s).

Claim 4. ι is continuous.

Proof. {A × B | A,B ∈ L} is a closed base for wL × wL. ι−1[A × B] =
A × X ∩ X × B. Since (A × X) ∩ (X × B) ∈ K, it corresponds to a closed
subset of wK. Thus ι is continuous.

We showed that ι is a continuous one-to-one onto map. wK being com-
pact and wL × wL Hausdorff implies that ι is a homeomorphism.

Corollary 3.3.2. Let e : L → 2X and f : K → 2X×X be the elementary
embeddings. Then ι ◦ w(f) = w(e) × w(e).

Proof. For every (x, y) ∈ X × X

ι ◦ w(f)(x, y) = ({π1[A] | (x, y) ∈ A, A ∈ K}, {π2[A] | (x, y) ∈ A, A ∈ K})

and
w(e) × w(e)(x, y) = ({B ∈ L | x ∈ B}, {C ∈ L | y ∈ C})
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Whenever x ∈ B ∈ L and y ∈ C ∈ L, we have (x, y) ∈ A × B ∈ K. So
{B ∈ L | x ∈ B} ⊂ {π1[A] | (x, y) ∈ A, A ∈ K} and {C ∈ L | y ∈
C} ⊂ {π2[A] | (x, y) ∈ A, A ∈ K}. From the above we know that all these
sets are ultrafilters, so we can replace ‘⊂’ by ‘=’. Hence ι ◦ w(f)(x, y) =
w(e) × w(e)(x, y) for all (x, y) ∈ X × X.

It means that whenever a subset of wL ×wL misses the diagonal of wL,
its preimage under ι ◦ w(f) misses the diagonal of X.

Theorem 3.3.3. Chainability is a property of continua that is elementarily
reflected by submodels.

Proof. Suppose that X is chainable. We will show that the continuum wL
is chainable as well. In 3.1.5 we proved that it is enough to consider open
covers of wL consisting of the elements from the base B = {wL \F | F ∈ L}
only. So let V = {v1, . . . , vm} ⊂ B be an open cover of wL.

Since 2X models the formula 3.1, there exists n ∈ ω and w1, . . . , wn ∈ 2X

such that θ[v1, . . . , vk; w1, . . . , wn], where θ is defined in 3.1. By elementarity,
there are {x1, . . . , xn} ∈ L such that θ[v1, . . . , vm; x1, . . . , xn]. Then {wL \
xi | i = 1, . . . , n} is an open chain cover of wL refining V .

Theorem 3.3.4. Being non-chainable is a property of continua that is ele-
mentarily reflected by submodels.

Proof. X being non-chainable means that there is an open cover {U1, . . . , Um}
every open cover refinement of which does not form a chain. Since ω ∈ M,
elementarity provides n ∈ ω and {u0, . . . , un−1} ∈ M such that

M |= {u0, . . . , un−1} ⊂ 2X ∧
⋂

i<n

ui = ∅

and {X \ u0, . . . , X \ un−1} is an open cover of X that does not have a chain
refinement. In the language of closed sets, for every m ∈ ω ⊂ M and every
{v0, . . . , vm−1} ⊂ 2X ∩M, if

M |=
⋂

i<m

vi = ∅ ∧
∧

i<m

∨

j<n

uj ⊂ vi (3.2)

then also

M |=
∨

{vi ∪ vj 6= X | |i − j| ≥ 2} ∨
∨

{vi ∩ vi+1 = X | i < m − 1}. (3.3)
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Suppose that wL is chainable. Since {u1, . . . , un} ⊂ L = 2X ∩M, by Lemma
3.1.5 there is m ∈ ω and a subset {vi | i < m} of L such that their com-
plements form a chain cover refinement of the cover {wL \ ui | i < n}. It
means that M models 3.2 but also M models the negation of 3.3, which is
a contradiction.

In order to prove reflection of span non-zero and span zero, we introduce
three unary functions p1, p1, i

′ on 2X×X .
The projections π1, π2 induce semi-lattice homomorphisms

π′
1 : 2X×X → 2X A 7→ π1[A]

π′
2 : 2X×X → 2X A 7→ π2[A]

having as right inverses lattice monomorphisms

e1 : 2X → 2X×X A 7→ A × X

e2 : 2X → 2X×X A 7→ X × A

respectively. We make π′
i’s into mappings from 2X×X to 2X×X by composing

them with ei’s

p1 := e1 ◦ π′
1 : 2X×X → 2X×X A 7→ π1[A] × X

p2 := e2 ◦ π′
2 : 2X×X → 2X×X A 7→ X × π2[A].

Since ei is a monomorphisms and π′
i is onto, Im(pi) is lattice-isomorphic to

2X .
To deal with symmetric span, we define a mapping

i : X × X → X × X (x, y) 7→ (y, x),

which induces the lattice isomorphism

i′ : 2X×X → 2X×X A 7→ A−1.

By elementarity, π′
1, π

′
2, e1, e2, p1, p2 and i′ are elements of M. Let us de-

note the restriction of π′
i to K by π

′K
i and the restriction of ei to L by eL

i .

Theorem 3.3.5. Having span non-zero is a property of continua that is
elementarily reflected by submodels.
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Proof. If X has span non-zero then there is a subcontinuum Z ⊂ X × X
that projects onto both coordinates onto the same set and that misses the
diagonal ∆X . It implies that for every closed subset F ∈ 2X we have

Z ≤ e1[F ] if and only if Z ≤ e2[F ].

Consider a family G of all closed subsets G of X such that Z ≤ e1[G]⊔ e2[G].
As Z ⊓ ∆X = 0,

d
G

G = 0. By compactness there is a finite subfamily
G ′ ⊂ G having zero meet. By elementarity there is such a Z in M; as ∆X

also belongs to M we get such a continuum in wL × wL.

Hereinafter, we regard 2X×X as a lattice algebra with three additional
unary functions p1, p2, i

′, so as a model for the language L = {⊔,⊓,0,1, p1, p2, i
′},

and K as an L-substructure of 2X×X . Let us denote the interpretation of a
function symbol f in K by fK .

Thanks to elementarity, Im(pK
1 ) and Im(pK

2 ) are lattice-isomorphic to L.
From the definition of the ultraproduct, Im(

∏

U
pi) is lattice-isomorphic to

∏

U
2X and Im(

∏

U
pK

i ) is lattice-isomorphic to
∏

U
L.

Theorem 3.3.6. Having (surjective) (semi)span zero and symmetric span
zero are properties of continua that are elemetarily reflected by submodels.

Proof. Let X be a continuum and L and K as above. Denote e : K → 2X×X

the elementary embedding. After adding the elements of K to the language
L as constants, the models K and 2X×X remain elementarily equivalent. By
Shelah’s theorem (2.3.9), there are a cardinal κ, an ultrafilter U on κ and an
isomorphism h :

∏

U
K →

∏

U
2X×X such that ∆◦ e = h◦∆, where ∆ stands

for the diagonal embedding of a structure into its ultrapower.

∏

U
K

∏

U
2X×Xh

//

K

∏

U
K

∆

��

K 2X×Xe
// 2X×X

∏

U
2X×X

∆

��

∏

U
K

∏

U
2X×X

h
//

∏

U
K

∏

U
K

Q

U
pK

i

��

∏

U
K

∏

U
2X×X

∏

U
2X×X

∏

U
2X×X

Q

U
pi

��

(3.4)
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Applying the functor w, we obtain a homeomorpism w(h) :
∑

U
X×X →

∑

U
wL × wL = w(

∏

U
K) such that ∇ ◦ w(h) = w(e) ◦ ∇, where ∇ = w(∆)

is the corresponding codiagonal map.
Let Z ⊂ wL×wL witness (surjective)(semi)span (symmetric span) non-

zero. Define ZX = ∇ ◦ w(h)−1[
∑

U
Z]. We show that ZX is a subcontinuum

of X × X that maps onto Z (so it does not meet the diagonal) and that
has the same “projection properties” as Z, so X has the same kind of span
non-zero as wL.

By 2.3.19,
∑

U
Z is a subcontinuum of

∑

U
wK and consequently ZX is a

subcontinuum of X × X.
We first show that ∇[

∑

U
Z] = Z using the description of ∇ from Lemma

2.3.17. On one hand, β(p)[
∑

U
Z] ⊂ β(p)[β(Z × I)] = p[Z × I] = Z (for a

subset S of a space Y, S denotes the closure of S in Y ). On the other hand,
Z = p[Z × I] ⊂ β(p)[

∑

U
Z] : in β(X × I) the closure of {z} × I intersects

∑

U
Z and the points in the intersection get mapped to z.

From ∇[
∑

U
Z] = w(e) ◦∇ ◦w(h)−1[

∑

U
Z] it follows that w(e)[ZX ] = Z,

which means that ZX misses the diagonal of X.
In the rest of the proof, we deduce that ZX inherits the “projection prop-

erties” (being symmetric) from Z.
Since h is an isomorphism, we have that h ◦

∏

U
pK

1 =
∏

U
p1 ◦ h and

similarly for p2 and i′. As π′
i and π′K

i are surjective and ei and eL
i are injective

it implies that h ◦
∏

U
eL

i =
∏

U
ei ◦ hL, where hL denotes h restricted to the

isomorphic copy of
∏

U
L in

∏

U
K.

The maps eL
1 and eL

2 induce the first and the second projections πwK
1 , πwK

2 :
wK = wL × wL → wL respectively via the Wallman representation. Sim-
ilarly

∏

U
eL

i induces
∑

U
πwK

i :
∑

U
wL × wL →

∑

U
wL and

∏

U
ei induces

∑

U
πi :

∑

U
X × X →

∑

U
X.

As h ◦
∏

U
eL

i =
∏

U
ei ◦ hL, also w(hL) ◦

∑

U
πi =

∑

U
πwK

i ◦ w(h).
Since ∇[

∑

U
Z] = Z, πi[

∑

U
Z] =

∑

U
πi[Z] and ∇ ◦

∑

U
πwK

i = πwK
i ◦ ∇,

πK
1 [Z] ⊂ πK

2 [Z] if and only if
∑

U

πK
1

[

∑

U

Z

]

⊂
∑

U

πK
2

[

∑

U

Z

]

πK
1 [Z] = πK

2 [Z] if and only if
∑

U

πK
1

[

∑

U

Z

]

=
∑

U

πK
2

[

∑

U

Z

]

πK
1 [Z] = wL if and only if

∑

U

πK
1

[

∑

U

Z

]

=
∑

U

wL
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As
∑

U
πi = w(hL)−1 ◦

∑

U
πwK

i ◦ w(h), w(h)−1[
∑

U
Z] has the same relation

between the projections on the axes as
∑

U
Z and consequently ZX as well.

The isomorphism i′K obviously induces iK := ι◦w(i′K)◦ι−1 : wL×wL →
wL×wL that switches the coordinates. Since

∏

U
i′K ◦h = h◦

∏

U
i′, it holds

that
∑

U
iK [A] = A if and only if

∑

U
i[w(h)[A]]) = w(h)[A] for A ⊂

∑

U
wL×

wL. It is easy to see that iK [Z] = Z if and only if
∑

U
iK [

∑

U
Z] =

∑

U
Z,

so iK [Z] = Z if and only if i[ZX ] = ZX .
We proved that whenever Z witnesses (surjective)(semi)span (symmetric

span) non-zero, then ZX witnesses the same kind of span non-zero in X.
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4 Questions

We proved that span zero is reflected by submodels using Shelah’s theorem,
which is a very deep and complicated result. Thus we ask

Question 2. Is there an easier (more direct) proof of the reflection of span
zero?

In metric case, the confluent onto mappings between continua with their
square confluent preserve span zero (see [10]). Hence a natural question arises

Question 3. Let f : X → Y be a confluent mapping from a continuum X
onto a continuum Y , let span of X be zero and f ×f confluent. Does Y have
span zero?

Bankston ([4]) proved that the Wallman representation of an elementary
embedding is weakly confluent. It is natural to ask whether it is confluent.
Although the answer is negative in general (there are codiagonal maps that
are not confluent [1]), the following question is still of major interest.

Question 4. If L is an elementary sublattice of 2X , is the Wallman repre-
sentation of the elementary embedding of L into 2X confluent?

Bankston used in the proof of weak confluence Shelah’s theorem.

Question 5. Is there a proof of (weak) confluence without the use of Shelah’s
theorem?

We would be successful if the following question had the affirmative an-
swer,

Question 6. Let L be an elementary sublattice of 2X . Can we prove that L
contains a dense subset of the hyperspace of all subcontinua of wL without
invoking Shelah’s theorem?

because
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Theorem 4.0.7. Let e : L → 2X be the elementary embedding of a countable
lattice L to 2X . Then L contains a dense subset of the hyperspace of all
subcontinua of wL if and only if w(e) is weakly confluent.

By the hyperspace C of a continuum Y we mean the space whose points
are all subcontinua of Y and the topology is generated by all sets of the form

〈U1, . . . , Un〉 = {C | C ⊂
n

⋃

i=1

Ui and C ∩ Ui 6= ∅ for every i = 1, . . . , n}

with Ui open in Y, for i = 1, . . . , n. It is easy to verify that the open sets
〈U1, . . . , Un〉 with Ui taken only from some open base for Y generate the same
topology on C. For a comprehensive overview on hyperspaces see [25].

Proof. (⇒) Let C denote the hyperspace of wL and D the hyperspace of
X. As X is compact, D is compact as well. wL being in addition
metric implies that C is compact metric (see for instance [12]). Take
an arbitrary subcontinuum K of wL and consider a sequence 〈Ki〉i∈ω

of elements from L converging to K in C. 〈Ki〉i∈ω with Ki taken as
subsets of X is then a sequence of subcontinua, so it has at least one
cluster point, say C. Then C maps onto K so w(e) is weakly confluent.

(⇐) Let e : L → 2X be the elementary embedding and w(e) its Wallman
representation.

We will show that for every subcontinuum A of wL and every open basic
neighbourhood A ∈ 〈U1, . . . , Un〉 such that for every i the complement
Hi of Ui in wL is an element of L, there is a subcontinuum E ∈ L ∩
〈U1, . . . , Un〉.

Pick an F ∈ L with A ⊂ int(F ) and F ⊂ U1 ∪ . . . ∪ Un. Then
w(e)−1[A] ⊂ FX , where FX denotes the representation of F as a sub-
set of X. If w(e) is weakly confluent, then there is a component C
of w(e)−1[A] such that C maps onto A. So C ⊂ FX ⊂

⋃

i∈I UX
i and

C ∩ UX
i 6= ∅ for i = 1 . . . , n. Hence 2X models

∃ G(conn(G) ∧ G ⊓
l

i∈I

Hi = ∅) ∧
∧

j∈I

G ⊓ (
l

i∈I

Hi ⊔ Hj) 6= ∅. (4.1)

In translation it means that there is a subcontinuum G of X that
is an element of the open set 〈UX

1 , . . . , UX
n 〉. By elementarity, there
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exists a subcontinuum E in L that fits into the open neighbourhood
〈U1, . . . , Un〉, which finishes the proof.

The Question 1 remains open. However, it can now be generalized.

Question 7. Is there a (non)-metric continuum that has span zero and is
not chainable?
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