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Foreword

The results presented in this work form one the chapters of my master thesis
submitted at Charles University. I would like to thank Daniel Král’, my
advisor, for introducing me to the concepts of submodular partition functions
and tree-decompositions. Further, I thank him for fruitful discussions on the
topic and careful readings of early versions of this work. The Sections 1 and 2
contain introduction to the subject and notation used throughout this work.
In the Sections 3 and 4, my results on submodular partition functions are
presented.
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Abstract

The notion of submodular partition functions generalizes many of well-known
tree decompositions of graphs. For fixed k, there are polynomial-time algo-
rithms to determine whether a graph has tree-width, branch-width, etc. at
most k. Contrary to these results, we show that there is no sub-exponential
algorithm for determining whether the width of a given submodular partition
function is at most two. In addition, we also develop another dual notion
for submodular partition functions which is analogous to loose tangles for
connectivity functions.
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1 Introduction

Graph decompositions and width-parameters play a very important role in
algorithmic graph theory (as well as structural graph theory). The most well-
known and studied notions include the tree-width, branch-width and clique-
width of graphs. The importance of these notions lie in the fact that many
NP-complete problems can be decided for classes of graphs of bounded tree-
/branch-width in polynomial time. A classical result of Courcelle [4] asserts
that every problem expressible in the monadic second-order logic can be de-
cided in linear time for the class of graphs with bounded tree-/branch-width.
An analogous result for matroids with bounded branch-width representable
over finite fields have been established by Hliněný [5, 6] and generalized using
a more specialized notion of width to all matroids by Král’ [8].

Most of the algorithms for classes of graphs of bounded width require a
decomposition of an input graph as part of input. Fortunately, optimal tree-
decompositions of graphs can be computed in linear time [2] if the width is
fixed and there are even simple efficient approximation algorithms [3]. For
branch-width, Oum and Seymour [9] recently established that the branch-
decompositions of a fixed width of graphs and matroids can be computed
in polynomial-time (or decided that they do not exist). Their algorithm
actually deals with a more general notion of connectivity functions which are
given by an oracle. A fixed-parameter algorithm for the same problem has
been developed by Hliněný and Oum [7].

In this work, we study submodular partition functions introduced by
Amini et al. [1]. This general notion includes both graph tree-width and
branch-width as special cases. We postpone the formal definition to Section 2.
In their paper, Amini et al. [1] presented a duality theorem that implies the
known duality theorems for graph tree-width and graph/matroid branch-
width of Robertson and Seymour [10].

Since the duality, an essential ingredient for some of the known algorithms
for computing decompositions of small width, smoothly translates to this
general setting, it is natural to ask whether decompositions of submodular
partition functions with fixed width can be computed in polynomial-time. In
this work, we show that such an algorithm cannot be designed in general. In
particular, we present an argument that every algorithm deciding whether a
partition width of an n-element set is at most two must ask an oracle the
number of queries exponential in n. On a positive side, we were able to
develop a notion of loose tangles, a key ingredient of the algorithm of Oum
and Seymour [9], for this more general concept which we hope to be of some
use to design algorithms for special classes of submodular partition functions.
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2 Notation

In this section, we introduce the notation and concepts used in this work. A
function f : 2E → N for a finite set E is said to be submodular if the following
holds for every pair of subsets X, Y ⊆ E:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) . (1)

A submodular function f is symmetric if f(X) = f(E \X), for all subsets
X of E. Finally, a connectivity function is a submodular function that is
symmetric and f(∅) = 0.

For a connectivity function f on a ground set E, a branch-decomposition

of f is a pair (T, σ) where T is a ternary tree and σ is a bijection between the
set of leaves of T and E. Every edge e of T naturally defines a bipartition
(Ae, Ae) of the ground set E, i.e., Ae consists of all elements that corresponds
to leaves of T in one of the two components of T \ e. The order of an edge
e of T is the value f(Ae) and the width of a branch-decomposition (T, σ) is
the maximum order of an edge of T . The branch-width of f is the minimum
width of all branch-decompositions of f . This notion includes the notion of
the usual branch-width of graphs and matroids.

There is a dual object to branch-decompositions called a tangle, intro-
duced by Robertson and Seymour [10]. A set T of subsets of E is called an
f -tangle of order k + 1 if T satisfies the following three axioms:

(T1) For all A ⊆ E, if f(A) ≤ k, then either A ∈ T or A ∈ T .

(T2) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(T3) For all e ∈ E, we have E \ {e} 6∈ T .

Robertson and Seymour [10] proved the following duality theorem be-
tween branch-decompositions and tangles.

Theorem 1 (Robertson and Seymour [10]). Let f be a connectivity function

on a ground set E. There is no f -tangle of order k + 1 if and only if the

branch-width of f is at most k.

We now introduce the concept of submodular partition functions that
provides a unified view on branch-decompositions of connectivity functions
and tree-decompositions of graphs. Throughout the work, Greek letters will
be used for collections of subsets, i.e., α can stand for a collection A1, . . . , Ak

of subsets of a set E. Note, that the sets in a collection are not ordered in
any way and a set can occur more than once in a collection. The collection α
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is a partition if the sets Ai are mutually disjoint and their union is the whole
set E.

There are shorthands for operations with collections of subsets we want
to use: if α is such a collection A1, . . . , Ak and A is another subset, then
α∩A stands for the collection A1 ∩A, . . . , Ak ∩A. We use α \A in a similar
way. Finally, [A, α] stands for the collection obtained from α by inserting A
to the collection. Note that empty sets are allowed in the collections.

A partition function is a function from the set of all partitions to non-
negative integers that satisfies ψ([∅, α]) = ψ(α) for every partition α, i.e.,
inserting an empty set to a collection does not change the value of the parti-
tion function. A partition function ψ is submodular if the following holds for
every two partitions [A, α] and [B, β]:

ψ([A, α]) + ψ([B, β]) ≥ ψ([A ∪ B, α ∩B]) + ψ([B ∪A, β ∩A]) (2)

Similarly to branch-decompositions, Amini et al. [1] defined a partitioning

tree of a partition function ψ. A partitioning tree on a finite set E is a tree
T with a bijection σ between its leaves and E. Every internal node v of T
corresponds to the partition of E whose parts are the leaves contained in
subtrees of T \ v. A partitioning tree is compatible with a set of partitions P
of E if all partitions corresponding to the internal nodes of T belong to P.

Let Pk[ψ] denote the set of partitions α of E such that ψ(α) ≤ k. The
branch-width of a submodular partition function ψ is the smallest integer
k such that there exists a partitioning tree compatible with Pk[ψ]. The
concepts of submodular partition functions and partitioning trees include
graph tree-width and branch-width as special cases.

There is a dual object to the partitioning tree called a bramble introduced
by Amini et al. [1]. A P-bramble B on E is a set of pairwise intersecting
subsets of E which contains a part of every partition of P. A P-bramble
is called non-principal if it contains no singleton. The duality theorem for
submodular partition functions asserts the following.

Theorem 2 (Amini et al. [1]). Let ψ be a submodular partition function.

There is no partitioning tree compatible with Pk[ψ] if and only if there is a

non-principal Pk[ψ]-bramble.

3 Loose tangles

A key ingredient of the algorithm of Oum and Seymour [9] for deciding
whether a connectivity function has branch-width k (k is fixed) is the notion
of a loose tangle which we now recall. For a connectivity function f on a

6



ground set E, a loose f -tangle of order k + 1 is a set T of subsets of E
satisfying the following three axioms:

(L1) ∅ ∈ T and {e} ∈ T for every e ∈ E such that f({e}) ≤ k.

(L2) If A,B ∈ T , C ⊆ A ∪B, and f(C) ≤ k, then C ∈ T .

(L3) E 6∈ T .

The following theorem by Oum and Seymour [9] states that the loose f -
tangles are also dual objects to branch-decompositions of connectivity func-
tions.

Theorem 3 (Oum and Seymour [9]). Let f be a connectivity function on a

ground set E. Then, no loose f -tangle of order k+1 exists if and only if the

branch-width of f is at most k.

Using loose tangles Oum and Seymour [9] managed to construct an algo-
rithm for deciding whether the branch-width of a connectivity function is at
most k for a fixed k in polynomial time when f is given by an oracle.

Similarly to the loose tangles of Oum and Seymour we introduce loose

tangles for submodular partition functions. A loose P-tangle is a set T of
subsets of E closed under taking subsets satisfying the following three axioms.

(P1) ∅ ∈ T , {e} ∈ T , for all e ∈ E such that the partition [{e}, {e}] belongs
to P.

(P2) If A1, A2, . . . , Ap ∈ T , Ci ⊆ Ai, for i = 1, . . . , p, [C1, . . . , Cp,∪
p
i=1
Ci] ∈

P, then ∪p
i=1
Ci ∈ T .

(P3) E 6∈ T .

To prove the main theorem of this section, we need a lemma.

Lemma 4. Let ψ be a submodular partition function and [A, α] a partition.

Then ψ([A, α]) ≥ ψ([A,A]).

Proof. Suppose that the partition [A, α] has at least three non-empty parts
and let [A,B, β] = [A, α]. By submodularity,

ψ([A, α]) + ψ([B,B]) ≥ ψ([A ∪ B, α ∩B]) + ψ([B ∪A,B ∩ A])

= ψ([B,B]) + ψ([A,A]).

The result follows.
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In the following theorem, we show that for classes of partitions of bounded
width, the loose tangle is a dual object to the partitioning tree.

Theorem 5. Let ψ be a submodular partition function. There is no parti-

tioning tree compatible with Pk[ψ] if and only if there is a loose Pk[ψ]-tangle.

Proof. Suppose there is a partitioning tree (T, σ) compatible with Pk[ψ] and a
loose Pk[ψ]-tangle T . We will show that T violates (P3). Choose an arbitrary
leaf x of T as a root. Every internal node v of T corresponds to a partition
αv. Let Cv be a union of all parts of αv except the one containing x. Define
Cv of a leaf v as the singleton σ(v). We will show by backward induction
on the distance from x that for every node v of T , the set Cv belongs to T .
Since T is a partitioning tree of E compatible with Pk[ψ], there is a partition
[{e}, αe] in Pk[ψ], for each e ∈ E. By Lemma 4, ψ([{e}, {e}]) ≤ ψ([{e}, αe]).
Hence, [{e}, {e}] belongs to Pk[ψ] and {e} is in T by (P1). For an inner
node v, all his children u1, . . . , up are farther from x than v and therefore all
Cui

are in T . By (P2), since [Cui
,∪Cui

] belongs to Pk[ψ], Cv ≡ ∪Cui
∈ T .

Finally, let v be the only child of x. Since Cv ∈ T and {σ(x)} ∈ T , by (P2),
Cv ∪ {σ(x)} = E also belongs to T . (P3) is now violated.

A partial partitioning tree for A ⊆ E is a partitioning tree for a partition
function ψ′ on (E \A)∪{a} defined as ψ′([B, β]) = ψ(((B\{a})∪A, β)) for a
partition [B, β] where B contains a. We say that a set A ⊆ E is k-branched
if there is a partial partitioning tree for A compatible with Pk[ψ].

Define T to be a subset of 2E closed under taking subsets, containing all
singletons and all k-branched sets. We will show that T is a loose tangle. (P1)
trivially holds since all k-branched singletons are in T . Let A1, . . . , Ap ∈ T
and Ci ⊆ Ai, i = 1, . . . , p, such that [C1, . . . , Cp,∪Ci] ∈ Pk[ψ]. We can
assume that Ai are k-branched (otherwise take such a superset of it instead).
Let Y1, . . . , Yp, Yi ⊆ Ai, be such sets that ∪Ci ⊆ ∪Yi and ψ([Y1, . . . , Yp,∪Yi])
is minimum. We will show that the set ∪Yi is k-branched.

To this end, we modify the partial partitioning tree Ti forAi to be a partial
partitioning tree for Yi. At first, we delete from Ti all leaves corresponding to
elements not in Yi. We then repeatedly contract all nodes of degree two or less
until we get a ternary tree T ′

i . We claim T ′

i is compatible with Pk[ψ]. Suppose
for a contradiction that there is an internal node v′ of T ′

i corresponding to
an internal node v of Ti such that αv′ 6∈ Pk[ψ]. Assume i = 1 since we can
relabel the parts so. Let [A, α] = αv such that A is the part of αv that
contains A1. We infer from the submodularity of the function ψ that

ψ([A, α]) + ψ([Y1, Y2, . . . , Yp,∪Yi]) ≥ ψ([A ∪ Y 1, α ∩ Y1])

+ ψ([Y1 ∪A, Y2 ∩ A, . . . Yp ∩ A,∪Yi ∩A])
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The choice of Y1, . . . , Yp yields that

ψ([Y1 ∪ A, Y2 ∩A, . . . , Yp ∩ A,∪Yi ∩ A]) ≥ ψ([Y1, . . . , Yp,∪Yi]).

Hence, ψ([A∪ Y 1, α∩ Y1]) ≤ ψ([A, α]) ≤ k and T ′

1
is compatible with Pk[ψ].

Now, construct a partial partitioning tree T by connecting T ′

i to a single
node corresponding to a partition [Y1, . . . , Yp,∪Yi]. This partition belongs
to Pk[ψ] since ψ([Y1, . . . , Yp,∪Yi]) ≤ ψ([C1, . . . , Cp]) ≤ k by the minimality
of ψ([Y1, . . . , Yp,∪Yi]). Therefore T is a partial partitioning tree for ∪Yi

compatible with Pk[ψ] and thus ∪Yi ∈ T . Since ∪Ci ⊆ ∪Yi, also ∪Ci ∈ T as
required.

If E ∈ T , then E is k-branched and the partial partitioning tree for E is
actually a partitioning tree for ψ. This contradicts the fact that ψ does not
have a partitioning tree compatible with Pk[ψ]. Therefore, E 6∈ T and (P3)
holds. We conclude that T is a loose Pk[ψ]-tangle.

4 Hardness of submodular partition functions

We first have to define several auxiliary functions before we can establish our
hardness result. Let gn be the function gn : 2E → N for E = {1, . . . , 2n}
defined as gn(X) = min{|X|, |X|}. We start our exposition with showing
that gn is submodular.

Lemma 6. The function gn is submodular for every n.

Proof. Consider two subsets X and Y . If both |X| ≤ n and |Y | ≤ n, then

gn(X) + gn(Y ) = |X| + |Y | = |X ∩ Y | + |X ∪ Y |

≥ gn(X ∩ Y ) + gn(X ∪ Y ).

If both |X| > n and |Y | > n, we get the same result by the symmetry of g.

gn(X) + gn(Y ) = gn(X) + gn(Y ) ≥ gn(X ∩ Y ) + gn(X ∪ Y )

= gn(X ∪ Y ) + gn(X ∩ Y )

So suppose that |X| > n and |Y | ≤ n. We get

gn(X) + gn(Y ) = |X| + |Y | = |X \ Y | + |Y \X| + 2|X ∩ Y |

≥ gn(X \ Y ) + gn(Y \X) = gn(X ∩ Y ) + gn(X ∩ Y )

= gn(X ∪ Y ) + gn(X ∩ Y ).

This finishes the proof.
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The function gn can be extended to a partition function φn on the ground
set E = {1, . . . , 2n} by setting

φn(α) = max
i∈I

gn(Ai).

A part Ai of α is dominating if gn(Ai) = φn(α). Note that, if α has a part
with at least n elements, then that part is dominating.

We proceed by showing that the function φn is submodular.

Lemma 7. The function φn is submodular for every n.

Proof. We check the following inequality for all partitions [A, α] and [B, β]:

φn([A, α]) + φn([B, β]) ≥ φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A]).

Observe that at least one of the parts A ∪ B or B ∪ A in this inequality is
dominating since one of A,A and one of B,B has at least n elements. If both
A∪B and B ∪A are dominating, then the submodularity of φn follows from
the submodularity of g:

φn([A, α]) + φn([B, β]) ≥ gn(A) + gn(B) = gn(A) + gn(B)

≥ gn(A ∩ B) + gn(A ∪B) = gn(A ∪B) + gn(A ∪ B)

= φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A])

Suppose that A∪B is not dominating, so take an Ai ∈ α such that Ai ∩B is
dominating. Since |B| ≥ n and Ai ⊆ A, it holds that gn(Ai∪B) ≥ gn(B∪A).
We use this inequality to prove the submodularity as follows:

φn([A, α]) + φn([B, β]) ≥ gn(Ai) + gn(B) ≥ gn(Ai ∩B) + gn(Ai ∪ B)

≥ gn(Ai ∩ B) + gn(B ∪A)

= φn([A ∪ B, α ∩B]) + φn([B ∪ A, β ∩A])

The case when B ∪ A is not dominating follows by symmetry.

Values of the function φn range between 0 and n. We now truncate the
function and define the following partition function φn,k on E = {1, . . . , 2n}
as follows:

φn,k(α) = min{φn(α), k}.

Next, we show that the function φn stays submodular after the truncation.

Lemma 8. The function φn,k is submodular for every n and k.
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Proof. Let us consider two partitions [A, α] and [B, β] that violates the in-
equality (2):

φn,k([A, α]) + φn,k([B, β]) ≥ φn,k([A ∪B, α ∩B]) + φn,k([B ∪A, β ∩ A]).

Since φn,k(γ) ≤ φn(γ) for all partitions γ, at least one of φn([A, α]) or
φn([B, β]) is larger than k. If both of them are, then the inequality triv-
ially holds. Suppose that φn([A, α]) < k. We will show that at least one of
φn([A ∪ B, α ∩B]) or φn([B ∪ A, β ∩ A]) is smaller or equal to φn([A, α]).

If |A| ≥ n, then φn([A ∪ B, α ∩ B]) ≤ φn([A, α]) since A ∪ B is the
dominating part and gn(A ∪ B) ≤ gn(A) ≤ φn([A, α]). If |A| < n, then
φn([B ∪ A, β ∩ A]) ≤ φn([A, α]) since B ∪ A is the dominating part and
gn(B ∪ A) ≤ gn(A) ≤ φn([A, α]). This finishes the proof.

Now, we use the function φn,3 to construct partition functions φ∗

n and φ∗

n,β

which appear in our hardness result. The function φ∗

n is defined as

φ∗

n(α) =

{

φn,3(α) if α has at most three non-empty parts, and
3 otherwise.

For a partition β of {1, . . . , 2n} into n two-element subsets, the function φ∗

n,β

is then defined as

φ∗

n,β(α) =







φn,3(α) if α has at most three non-empty parts,
2 if α = β, and
3 otherwise.

First, we show that these functions are submodular.

Lemma 9. The function φ∗

n is submodular for every n.

Proof. Observe the following:

• If φ(α) = 0, then also φ∗

n(α) = 0.

• If φ(α) = 1, then φ∗

n(α) = 1 unless α is a set of singletons where
φ∗

n(α) = 3.

• If φ(α) = 2, then φ∗

n(α) = 2 unless α has more than three non-empty
parts. In this case, every part of α is a pair or a singleton.

Therefore the functions φn,3 and φ∗

n differ only on partitions consisting of
singletons and pairs.

Let us assume for a contradiction that φ∗

n is not submodular. Since
φ∗

n(α) ≥ φn,3(α) for all partitions α, the violation of the submodularity is
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caused by an increase on the right-hand side of (2). Consider partitions
[A, α] and [B, β] violating the inequality (2). Hence, say, γ = [A ∪B, α ∩B]
is that partition containing only singletons and pairs. Since γ has all parts of
size at most two, |B| ≤ 2. If A ∩B = ∅, then B ⊆ A and A ⊆ B. Therefore
γ = [A, α], [B ∪ A, β ∩ A] = [B, β] and the inequality trivially holds. So we
can assume that |B∪A| > |B| and since 2n−2 ≤ |B| < 2n, by the definition
of φ∗

n

φ∗

n([B, β]) > φ∗

n([B ∪A, β ∩A]) . (3)

Since the number of non-empty parts of γ is at least 4, the number
of non-empty parts of [A, α] is at least 3 and therefore φ∗

n([A, α]) ≥ 2 by
the definition of φ∗

n. The submodularity follows from (3) and the fact that
φ∗

n(γ) ≤ 3 ≤ φ∗

n([A, α]) + 1.

Lemma 10. The function φ∗

n,β is submodular for every n ≥ 4 and for every

partition β consisting only of two-element sets.

Proof. Since φ∗

n and φ∗

n,β differ only on partition β where φ∗

n(β) ≥ φ∗

n,β(β), β
has to be on the left-hand side of the inequality (2) to violate it. Let [A, α]
and β = [C, γ] be the partitions violating the inequality (2):

φ∗

n,β([A, α]) + φ∗

n,β([C, γ]) ≥ φ∗

n,β([A ∪ C,A ∩ C]) + φ∗

n,β([C ∪A, γ ∩ A])

Since |C| = 2, φ∗

n,β([A ∪ C,A ∩ C]) ≤ 2. Hence φ∗

n,β([A, α]) ≤ 2. If |A| ≤ 2,

then |C ∪ A| ≥ 2n− |A| and φ∗

n,β([C ∪ A, γ ∩ A]) ≤ φ∗

n,β([A, α]), contradict-
ing the assumption. Therefore A has to have at least 2n − 2 elements and
φ∗

n,β([A ∪ C,A ∩ C]) ≤ φ∗

n,β([A, α]).

If C ⊆ A, thenA ⊆ C and φ∗

n,β([C∪A, γ∩A]) = φ∗

n,β([A, α]), contradicting

the assumption. Therefore |A∪C| > |A| giving φ∗

n,β([A, α]) > φ∗

n,β([A∪C,A∩

C]). Since φ∗

n,β(β) + 1 = 3 ≥ φ∗

n,β([C ∪A, γ ∩A]), the inequality (2) holds —
a contradiction.

In the proof of the main theorem we will use the fact that the width
of the function φ∗

n is three while the width of the modified function φ∗

n,β

is two. To see that branch-width of φ∗

n,β is at most two, just consider the
following branch-decomposition T of φ∗

n,β. T has a root x with n children
v1, . . . , vn each vi connected to two leaves corresponding to the two elements
in βi. Since φ∗

n,β(αx) = φ∗

n,β(β) = 2 and φ∗

n,β(αvi
) = 2, for i = 1, . . . , n, the

branch-decomposition T has width two. In the next lemma, we show that
the branch-width of φ∗

n is three.

Lemma 11. For n ≥ 4, the branch-width of φ∗

n is three.
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Proof. Let T be a branch-decomposition of φ∗

n of width smaller than three.
We assume there are no nodes of degree two in T since we can contract them
obtaining a smaller branch-decomposition of the same width. Since every
internal node v of T of degree larger than three corresponds to a partition
αv of E with more than three parts (thus φ∗

n(αv) = 3), there are no such
vertices in T and T is a ternary tree. Consider an arbitrary internal node v
of T with less than two leaves as neighbors. There have to be such a vertex
v since there are at most n vertices with two leaves as neighbors but there
are 2(n− 1) internal nodes. For such a vertex v, αv contains a part with at
least three elements and at most 2n− 3 elements implying φ∗

n(αv) = 3. This
finishes the proof.

We are now ready to establish our hardness result. We assume the exis-
tence of an algorithm and show that it cannot discover a small discrepancy
between a submodular partition function having width three and two.

Theorem 12. There is no sub-exponential algorithm for determining whether

the branch-width of an oracle-given submodular partition function on a set

with 2n elements is at most two.

Proof. Assume that there exists such a sub-exponential algorithm A and run
A for the submodular partition function φ∗

n. The algorithm A must clearly
output that the width φ∗

n is at least three. Since the running time of the
algorithm is sub-exponential, for n sufficiently large, there exists a partition
β of {1, . . . , 2n} into n two-element subsets such that A never queries β (there
are (2n)!/(n!2n) such partitions and A cannot query all of them because of
its running time). However, the algorithm A for φ∗

n,β performs the same
steps and thus it outputs that the width of φ∗

n,β is at least three which is not
correct.
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